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The effect of a treatment on an outcome.

In these lectures, we assume we consider a population of n
people.

We want to know the effect of a treatment variable D; on an
outcome variable Y;.

E.g.: what is the effect of having access to health insurance
(D;) on health (Y;)?

E.g.: what is the effect of number of years of schooling (D;) on
wages (Y;)?

Often, the treatments we are interested in are binary

variables (having / not having health insurance), but
sometimes they are not (years of schooling).

In this section of the lectures, we focus on the case where the
treatment is binary.

First, we are going to define precisely what we would like to
measure, in the context of an example.



Your mission

Measure if 15t grade students in Kenya perform better in tracked
schools than in non-tracked schools.

You will consider schools with 2 15t grade classes, classes A and B.
Students take a test at the start of the year.

Tracked schools: students below the school median in that test sent
to classroom A, students above the median sent to classroom B.
Classroom A weaker, classroom B stronger.

Non-tracked schools: classrooms A and B have the same numbers
of strong and weak students.

Treatment D;: binary variable equal to 1 if student i is in tracked
school. Outcome Y;: student i’s test score in end of flrst grade.




Big picture economics question

e How are education and learning produced?
 One key input to the education production function=teacher.

 Another key input: classmates.
— Maybe strong students help weaker ones: peer effects.

— Maybe weaker students do not dare to ask questions because
feel they would slow down class too much: censoring effect.

 Tracking:
— Probably increases teachers’ effectiveness: easier to teach a
homogeneous class than a very heterogeneous one.
— Probably reduces peer effects: weak students are all in the same
classroom, and not strong student in that classroom => do not
benefit from help of strong students.

— Probably reduces censoring effect: now weak students less shy
to ask questions when not too strong students in their class.

Effect of tracking on test scores? Unclear, depends on relative
strength of those effects. => we need to study this question

empirically.



Potential outcomes...

e We now introduce the concept of potential outcomes,
to define precisely the effect of tracking on test scores.

 You want to measure the effect of studying in a tracked
versus a non-tracked school on the test score that
Sharon, a Kenyan 1st grade student, will achieve in the
end of 1t grade.

 To measure that effect, you need to measure:

— the 15t grade test score Sharon will obtain if she
studies in a tracked school: Yspharon(1).

— the 15t grade test score Sharon will obtain if she
studies in a non-tracked school: Ysharon(0).

* Vonaron(1l) and Ysharon(0) are the two potential test
scores that Sharon will obtain if she studies in a tracked
school and if she studies in a non-tracked school.



... And treatment effects

* Vsharon(1) and Ysharon(0) are the two potential test
scores that Sharon will obtain if she studies in a tracked
school and if she studies in a non-tracked school.

e The effect of studying in a tracked school on Sharon’s end
of 15t grade test score is the difference between these two
potential outcomes: Ysharon(1) — Ysharon(0).

e We compare the performance of the same person, Sharon,
with and without tracking, to isolate the effect of tracking.

e Cetebus paribus analysis (everything else equal).

 We say that tracking is the treatment we are interested in.
That’s because impact evaluation literature comes from
medicine, were they study effects of medical treatments.



Sharon slightly benefits from tracking

e Assume that Ysharon(0) = 0.85 and ysharon(1) = 0.90.

* Ysharon(0) = 0.85 means that Sharon will get 85% of the
correct answers in the end of 15t year test if she studies in
non-tracked school.

* Ysharon(1) = 0.90 means that Sharon will get 90% of the
correct answers in the end of 15t year test if she studies in a
tracked school.

 The effect of studying in a tracked school on Sharon’s test
score is Ysharon (1) — Vsharon(0) = 0.90 — 0.85 = 0.05.

e Tracking increases her proportion of correct answers in the
end of first year test by 0.05.

e Small effect. Sharon = strong student. Does well
irrespective of tracking. With tracking, teacher can
challenge her a bit more (only strong students in her class)
=> improves a bit but not huge difference.

e |sit plausible to assume that for all students, the effect of
tracking is to increase their % of correct answers by 0.05?
Discuss this question with your neighbor for 2mns. 8



iClicker time

e |s it plausible to assume that for all students,
the effect of tracking is to increase their % of
correct answers by 0.05, like for Sharon?

e A) Yes, this is plausible.
e B) No, this is not plausible.



Mercy strongly benefits from tracking

e Now consider another student, Mercy.
* Assume Ypercy(0) = 0.30 and Yypercy (1) = 0.60.

e Mercy will get 30% of the correct answers in the end of 1%
year test if she studies in a non-tracked school, and will get
60% of correct answers if she studies in a tracked school.

 Mercy is a weaker student than Sharon. In a non-tracked
school, lags behind her peers, cannot keep up with pace of
instruction. Does not dare to tell teacher when does not
understand.

* Intracked school, Mercy feels more comfortable to ask
guestions, and the teacher can tailor the instruction to meet
the needs of weaker students.

e Therefore, Mercy would strongly benefit from tracking:
YMercy (1) — YMercy(0) = 0.60 — 0.30 = 0.30: tracking
increases her proportion of correct answers by 0.30.



Can we compute the effect of tracking on
Sharon and Mercy?

* |n this hypothetical example, we have assumed we
know the potential test scores of Sharon and Mercy,
without and with tracking.

* |n practice, can you observe at the same time
VYsharon (0) and Ysharon(1)? Therefore, can you

compute Ysharon(1) — Ysharon(0)? Discuss this
guestion with your neighbor for 1mn.
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e In practice, can you observe at the same time
YSharon(O) and YSharon(l)? Therefore, can

you compute YSharon(l) — Ysharon(0)?
e A) Yes
e B) No



Fundamental problem of causal inference

e Sharon has two potential end of 15t grade test scores:

— Ysharon(0): score if studies in non-tracked school.

— Ysharon(1): score she obtains if studies in tracked school.
e Can you observe both ysparon(0) and Ysharon (1)?

 Nol! Either Sharon goes to a non-tracked school, in which case her
end of first grade test score Y; is Ysharon (0)...

e ...Or Sharon goes to a tracked school, in which case her end of first
grade test score Y; is Ysharon(1)-

e Sharon cannot go both to tracked and non-tracked school, so we
cannot observe both what happens to her if she goes to tracked
school, and what happens to her if she goes to non-tracked school.

e We have Yi — Dlyl(l) + (1 — Dl)yl(o)'
— for students that go to tracked schools (D;=1), the test score
that we observe for them in the end of the year is y; (1)

— for students that do not go to tracked schools (D;=0), the test
score that we observe for them in the end of the year is y; (0).

 Fundamental problem of causal inference: we can never observe
the same person with and without the treatment. Therefore, we
can never compute the effect of a treatment on a specific person.

13



Frost’s “Road not taken”: poetic version of
fundamental problem of causal inference.

Two roads diverged in a yellow wood, [Fiekae= alaele 4ale)iAleleiny
And sorry | could not travel both his potential life where
he travels road A, and his

potential life where he
And looked down one as far as | could EiENA G or 6l 2h

And be one traveler, long | stood

To where it bent in the undergrowth;

Then took the other, as just as fair, Here, he claims that
[...] travelling road A rather
than B made his life
better. Actually he
cannot know.

Two roads diverged in a wood, and |
| took the one less traveled by,
And that has made all the difference.




Let’s try to learn average effect of treatment

among students that go to tracked schools.

e 7n:number of 15t grade students in Kenya. n; < n: number of
students that go to tracked schools. n — n;: number of
students in non-tracked schools.

e Foreveryliincluded between 1 and n:

— D; equal to 1 if student i goes to a tracked school, 0
otherwise.

— v;(0): potential end of first grade test score of student i if
goes to a non-tracked school, y;(1): her test score if goes
to a tracked school.

 Average effect of going to tracked school on scores of
students that go a tracked school is

1

— z (v: (1) — ¥:(0))

ny .
1:D;=1

Average treatment effect on the treated (ATT).

1 1
* P3Sum:ATT = n_lzi:Di=1 yl(l) _n_lzi:Dl:l yl(o)
* Inthese lectures, the parameter we will try to learn is ATT.



ATT = average of y;(1) - average of y;(0)

for students who go to tracked schools.
1 1
* ATT = n_ZiZDi=1 yl(l) T n_Zi:Di=1 yl(o)
1 1
o ATT: average of y;(1) for students who go in tracked
schools, minus average of y;(0) for the same students.

e |f we have a data set where we observe Y;, the end of 1%
grade test scores of all Kenyan students, we can compute
one these two averages, not the other one. Which is the
one we can compute, which is the one we cannot

compute? Discuss this question with your neighbor for 2
minutes.
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1 1
* ATT = —2i.p;=1Yi(1) ——2:p,=1 ¥i(0)
1 1

e |f we have a data set where we observeY;, the end of
15t grade test scores of all Kenyan students, we can
compute one these two averages, not the other one.
Which is the one we can compute, which is the one we

cannot compute?
. A) We can compute — : Zl p;=1Yi(1) but not
_Zl D= 1 Yi(0)
. B1) We can computeni1 Zi:Di=1 y;(0) but not
_Zi:Di=1 y;(1)

nq



ATT = average y;(1) - average y;(0) for students in

tracked schools, but we only observe average y;(1).

ATT—_ZLDL 1yl(1) ZlDl 1yl(0)

nq
If we have data set with end of 15t grade test scores of all Kenyan
students, we can compute 1 of these 2 averages, not the other.
Which is the one we can compute, which is the one we cannot
compute?
1
We can compute n_zi:Dl:l y;(1): for students that go to tracked
1

schools, Y; = y;(1): the test score they obtain in the end of 1%
grade is y;(1), their test score when they go to a tracked school.

Average test score of those n, students gives us — Zl D;=1 y; (1).

We cannot compute n_zi:Dl:l y;(0): average test scores that the
1

students who went to tracked schools would have obtained if had
gone to non-tracked schools.

We need to find an estimator of — Zl 0;=1Yi(0).

18



What you need to remember

We want to know effect of binary treatment D; on outcome Y; of person i.
E.g.: we want to measure effect of tracking on the test score of person i.

Measuring treatment effect on outcome of unit i requires measuring the
potential outcomes of that person with and without the treatment, y;(1)
and y;(0), to be able to compute y;(1) — y;(0), effect of treatment on
outcome of person i.

We cannot do this, fundamental problem of causal inference.
We have Yi = Dlyl(l) + (1 — Dl)yl(o)'
— Either person i receives treatment, and then we only observe her
potential outcome with treatment y;(1).

— Or person does not receive treatment, and then we only observe her
potential outcome without treatment y; (0).

We cannot measure the effect of the treatment on a specific individual.
But maybe we can measure average effect of the treatment on the

1
treated, ATT = n—ZLD =1 ¥i(1) = Zlul 1 ¥i(0).
We can compute Zl .D;= 1 yi(1): average Y; of the treated people.

1
We cannot compute i D=1 y;(0): average outcome without treatment
of the treated people. 1Unobserved

We need to find an estimator of — Zl .0;=1Yi(0).
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The effect of health insurance on health.

In this section, we use other example to illustrate discussion: what is effect
of having health insurance on health, and health expenditures?

Treatment D;: having access to health insurance, outcome Y;: health,
health expenditures.

Background: US is one of the only advanced economies where large
fraction of population still does not have health insurance. In Western
Europe, free health insurance for almost everyone.

Economists disagree on consequences of granting health insurance.

Insurance reduces the cost of healthcare for patients => should increase
expenditures if demand elastic. But maybe then people can pay for
preventive care (e.g. get their cholesterol checked) and then avoid
diseases with very large costs (e.g. heart attacks) => maybe actually
insurance reduces health expenditures.

Then, maybe increase in health expenditures => you get access to better
care => better health. Or maybe insurance => you know you will not need
to pay for your health care => you start adopting risky health behaviors
(smoking, drinking): moral hazard => your health deteriorates.

Conflicting economic theories give opposite answers to same question: we
need to study this question empirically.

Aside. Health expenditures = 10k USD per person and per year in the US,
against 5k in Western Europe, but life expectancy much lower in the US.
Life expectancy in the US in 2016: 79.3 years old, same as Cuba, below
Chile or Greece, countries with much lower income / head.



What if we ran an OLS regression of health on whether
people are insured?

2015 National Health Interview Survey (NHIS): representative
survey of American population.

Respondents asked to rate overall health on scale from 1 to 5.

Let Y; be health of respondentiin 2015 and let D; be binary
variable equal to 1 if i had health insurance in 2015 and 0 if did not.

We could run an OLS regression of Y; on a constant and D;, and use
f1, the coefficient of health insurance variable as our measure of

the effect of health insurance on health.

Lyn (Di-D)(Y;~T)

7 _n
L= ooy
and health, measures whether health and insurance move together

or in opposite directions => maybe [; good measure of effect of
insurance on health.

We run regression and find 8; = 0.31. Also, f3; statistically
significant at 5% level.

Can we conclude from the fact that £, is positive and significant
that being insured improves health?

. Numerator: covariance between insurance

22
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e Using 2015 NHIS data, we run an OLS
regression of Y; (2015 health) on a constant

and D; (insurance in 2015), and find ; =

0.31. Also, f3; statistically significant at 5%
level. Can we conclude from this that being
insured improves health?

e A)Yes
e B) No



No, due to omitted variable bias.

e v:(0): health of respondent iin 2015 if uninsured in 2015.

e v:(1): health of respondent iin 2015 if insured in 2015.

e To simplify, we momentarily assume that y;(1) — y;(0) = p,
for some number p.

e We assume that effect of health insurance on health is the
same for every respondent in the NHIS survey. Constant
treatment effect assumption.

e Unrealistic, but makes the derivation of omitted variable bias
formula simpler (formula still holds without that assumption).

 Under constant treatment effect assumption,

ATT_— lDl 1(yl(1) yl(O)) - lDl 1P = P-

nq

e Under the constant treatment effect assumption, what we are
trying to learn is p.



Two useful formulas before we derive omitted
variable bias formula.

e LetY; be actual health of respondentiin 2015.

* Y, =(1-D)y;(0) + D;y;(1).
 Under the constant treatment effect assumption,

Y; = (1—-D;)y;(0) + D;y;(1) = y;(0) — D;y;(0) + D;y;(1) =
y:(0) + (v;(1) — y;(0))D; = y;(0) + pD;.

e Therefore,

Y = Z - 1(yl(0)+pD) __Zl 1yl(0)+

P, D; = y(O) + pD.



The omitted variable bias formula (1/2)

1

=¥ (Di-D)(Y;-Y)

e Y; =v;(0)+ pD;and ¥ = y(0) + pD, p; =©

* Plugging¥; = y;(0) + pD; and ¥ = 3(0) + pD into formula for p;:
L 0-D)0i(0) + pD; ~ 5(0) ~ pD)
N Ly (0,-D)?
Lyn [(0=D)(3:(0) — 5(0)) + (D;=D)(pD; — pD)]
Lyn (0-Dy?
Lyn  (D=D)3i(0) = 7(0)) + £ X1, (D~D)p(D; — D)
_ LS, (0-Dy?
L 0D (0) ~ 500 + 31, (DD
_ Ly (0,-D)?
Ly D=D):(0) - 7(0))

1 _
ﬁz?ﬂ(Di_D)z

1 —
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The omitted variable formula (2/2)

1 = —
5 p2i=a@i=D)(yi(0)-¥(0))
PL= P I oy

« B, = effect of health insurance of health + covariance between
respondents’ health without insurance (y;(0)) and whether they are
insured or not (D;)/ variance of insurance variable.

e General result: in regression of an outcome on a constant and a
treatment, the coefficient of the treatment is equal to the effect of
the treatment + covariance between outcome without treatment
(y;(0)) and treatment (D;) / variance of treatment.

e This second term is called the omitted variable bias term.

* Therefore, ,5’1 = p, the effect of health insurance on health, if and only
if 0 covariance between respondents’ health without insurance (y;(0))
and whether they are insured or not (D;).

e« Otherwise $; # p, meaning that coefficient of D; in regression of Y; on
a constant and D; is not equal to the effect of D; on'Y;.

e Do you think that whether someone gets insured or not is

uncorrelated with her health without insurance? .



iClicker time

e |tis plausible that whether someone gets
insured is

e A) positively correlated with the health of that
person without insurance

e B) uncorrelated with the health of that person
without insurance

* C) negatively correlated with the health of
that person without insurance




Getting insured is likely to be positively correlated

with health without insurance

 People getting insured are people rich enough to pay for insurance.
Richer people also tend to be more educated. In NHIS survey,
insured have more education and a higher income than uninsured.

Average Years of Education 14.31 11.56
Average Family Income 106,467 46,656

 More educated people tend to smoke less and exercise more. So
being insured may be positively correlated with y;(0), health
without insurance: even without insurance insured people would
smoke less and exercise more so they would be in better health.

% iL1(Di=D)(¥i(0)-y(0)) 1

1 — )

i=1(D;—D)(¥:(0) — ¥(0)) > 0,

so 3; > p: [3; overestimates effect of health insurance on health.

» Bi=p+

e Maybe insured healthier not because insured, but because smoke

less & exercise more. Smoking & exercising = omitted variables.



Omitted variable with binary treatment (1/2)

When treatment binary, omitted variable formula becomes simpler, and we
can derive it without assuming constant treatment effect.

(3, is coeff. of D;, binary variable, in reg. of Y; on a constant and D;.

1 1

— n_lzl':Di=1 Yl — n-ng Zi:Di=O Yl

1

1 — Xip;=1Yi(1) —WZL-;DFO%-(O)

1

1, — .i:p; 1371(1) ZLD 13’1(0)"' ZLD -1 ¥:(0) ___nzi:Dl:Oyi(O)

_Zi:Dl:O y;(0).

nq
ZLD Oyl(o) ATT = _ZLD 1yl(1)
iZi;pi=1 v;(0), so f; uses ﬁzi:p:o y;(0), average health of uninsured,
—1N4q i

nq

31 = - ZLDL 1 yi(1) —

nq n—-—nq

. 1 . . .
to estimate n_Zi:Di=1Yi(0) average health of insured without insurance.
1



Omitted variable with binary treatment (2/2)

When treatment binary, omitted variable formula becomes simpler:

5 1 1
p1 = ATT + n_12i:Di=1 yi(0) — _Zi;pizo y;(0).

n—nq
f3,= average effect of being insured on health among insured
people (ATT)+ difference between average health without insurance

(y;(0)) of insured (D; = 1) and uninsured (D; = 0) people.
General result: in regression of outcome on constant and binary
treatment, coefficient of treatment equal to average effect of

treatment among treated people (ATT)+ difference between
average y;(0) of treated (D; = 1) and untreated (D; = 0) people.

Second term is omitted variable bias term in previous formula.
When treatment binary, sometimes called selection bias term.

Therefore, §; = ATT, if and only if insured and uninsured would
have same average health in 2015 if uninsured in 2015. Otherwise

B, # ATT.

Do you think that insured and uninsured would have same average
health in 2015 if insured had remained uninsured? 31
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Do you think that insured and uninsured have
same average health without insurance?

e A) Yes
e B) No



Insured would probably be in better health than
uninsured even if they had not gotten insurance.

* Inthe NHIS survey, it is indeed the case that insured respondents have
more education and a higher income than uninsured respondents.

Average Years of Education 14.31 11.56

Average Family Income 106,467 46,656

* More educated people tend to smoke less and exercise more. So even if
they had not been insured in 2015, the average health of insured people
in 2015 would probably have been higher than average health of

1
uninsured people: Zle 1yl(O) — ——Yi.p,=0Yi(0) > 0.

« By =ATT T Zz :D;= —1Y:(0) — Zi:Di=0 y;(0) and n_12i:Di=1 y;(0) —
- 2i:D;=0 yi(O) > 0,50 8; > ATT: [3; overestimates the average effect

n-nq
of health insurance on the health of insured people.

n-nq

e Maybe insured are in better health not because insured, but because
smoke less & exercise more. Smoking & exercising = omitted variables.
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The attribution problem
 With binary treatment,
Zi:Di=0Yi

* Good measure of the effect of D; on Y; only if the only difference
between people with D; = 1 and people with D; = 0 is that the
first group got the treatment and not the other one.

A 1
b1 = _Zi:Di=1 Y, —

nq

1
n-nq

* |nthe health insurance example, this is not the case. Many other
differences between insured and uninsured: insured richer, more
educated, smoke less, exercise more.

e Therefore, we cannot know whether the difference between the
average health of the two groups comes from the fact one group is
insured and not the other one, or from the fact insured are richer,
smoke less, etc. => Maybe insured would have been in better health
even if uninsured, maybe +# in health not due to insurance.

e Attribution problem: if people with D; = 1 and D; = 0 differ on
many characteristics (treatment + other characteristic), you cannot
know which characteristic generates difference in their outcome.



Definition of omitted variables

Omitted variables are variables that are not included in the
regression, that are correlated with D;, and that have an
effect on y;(0).

E.g.: in the regression of health on a constant and insurance,
the smoking status of each individual is an omitted variable.

Smoking is correlated with insurance (uninsured people tend
to smoke more), and smoking has an effect on y;(0), health

without insurance.

When we have an omitted variable in a regression, the
coefficient of D; in that regression does not measure the
causal effect of D; onY;.



Correlation is not causation!
. B = 3, (Di-D)(Y—T)
LT iy (0-D)?

and insurance.

measures the correlation between health

e Measures whether Y; and D; move in the same or opposite
directions: do people who are insured tend to be in better health
than people who are not insured.

e Health and insurance move in same direction, but maybe not
because insurance has positive effect on health, maybe because
insured people exercise more and smoke less than uninsured.
Smoking and exercise are omitted variables in this regression.

e Correlation is not causation! The fact that having insurance is
positively correlated with health does not mean that having
insurance has a positive effect on health.

e Assume that in the 2015 NHIS data set, there is another binary
variable X; equal to 1 if respondent i smokes and to O otherwise.
How could you use X; to form a better measure of the effect of
health insurance on health?
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e Assume that in the 2015 NHIS data set, there is
another binary variable X; equal to 1 if
respondent i smokes and to 0 otherwise. Which
of the following would be a better measure of the

effect of health insurance on health than ;?

e A) @ ,the coefficient of X; in a regression of Y;
on Xi'

* B) ¥4, the coefficient of D; in a regression of Y; on
a constant, D;, and X;.

e C) The average value of X;.



1£%
e j, =coeff. of D; in a regression of Y; on a constant, D;, and X;. D;
and X; binary, so follows from slides on multivariate regression that

R 1 1 1 1
Vi=w|— E Yi —— E Vi [+ (1 —w) E Yi —— E Y;
Nqo Noo 0 n11 0D Noq

i:D;=1, X;=0 i:D;=0, X;= =1, X;=1 i:D;=0, X;=1
1 1
° ;Zi:Dizl’ X;=0 Yl — n—ozi:Dizo’ X;=0 Yl difference between
average health of insured and uninsured that don’t smoke (X; = 0).

e Therefore, this difference cannot come from the fact insured smoke
more than uninsured: both groups do not smoke.

1 1
. n—ZlD =1, x;=0Yi — —ZlD —0, x;=0 ¥;: difference between

avoerage health of insured and unlnsured that smoke (X; = 1).

e Therefore, this difference cannot come from the fact insured smoke
more than uninsured: both groups smoke.

e j, compares health of insured and uninsured, controlling for
smoking status. ¥ shuts down omitted variable bias in §; coming
from difference in smoking rates between insured and uninsured.

 We run regression and find ¥; = 0.23. Also, J/; statistically
significant at 5% level. Can we conclude that being insured
improves health?
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e Using 2015 NHIS data, we run an OLS
regression of Y; (2015 health) on a constant,
D; (insurance in 2015), and X; (whether
person smokes). We find ; = 0.23. Also,

Y statistically significant at 5% level. Can we
conclude from this that being insured
improves health?

e A)Yes
e B) No



No, due to omitted variable bias.

1 1 .
n — Zi:DFO, x;=0 Y;: diff. between average
10 00

health of insured and uninsured people that do not smoke (X; = 0).

Zl':Di=1, Xi=0 Yl _

This diff. may not come from the effect of insurance on health, may
just come from the fact that insured non smokers exercise more
and are richer than uninsured non smokers.

— iZi:D:o y.—p Y;: diff. between average

Nio Moo Lo ot

health of insured and uninsured people that smoke (X; = 1).

Zi:Di=1, Xi=0 Yl o

This diff. may not come from the effect of insurance on health, may
just come from the fact that insured smokers exercise more and are
richer than uninsured smokers.

Controlling for smoking status reduces but does not solve the
omitted variable bias problem.

There are still omitted variables in that regression. For instance,
exercise is not included in the regression, it is correlated with
insurance (uninsured people exercise less), and it has an effect on
y;(0), health without insurance.



Couldn’t we control for all omitted variables?

Couldn’t we just include all variables correlated with D; and
that have an effect on y;(0) in regression? Then, we would no
longer have any omitted variable.

Issue: often, there are variables correlated with D;, that have
an effect on y;(0), but that are not included in our data set,
so we cannot include them in our regression!

In the insurance and health example, “motivation to stay in
good health” is probably correlated with insurance: people
who are the most motivated to stay in good health will
purchase insurance, people less motivated won’t.

“motivation to stay in good health” also has an effect on
y;(0): the higher your motivation to be in good health, the
better your health habits, and the better your health.

However, something like “motivation to stay in good health” is
very hard to measure => we rarely have that variable in our
data set and we cannot include it in the regression.



The effect of education on wages

e Data set of homework 3. Representative sample of 14086 wage
earners.

 We regress their In(wage) Y; on a constant and their years of
schooling D;.
e [3; positive and significant.

Linear regression Number of obs = 14,086

F(1, 14084) = 2209.70

Prob > F = 0.0000

R-squared = 0.1474

Root MSE = . 79406

Robust

In_weekly wage Coef. Std. Err. t P>|t] [95% Conf. Interval]
years_of_schooling .1153305 -0024535 47.01 0.000 .1105214 .1201396
_cons 4.929266 .0338734 145.52  0.000 4.86287 4.995663

e Can we conclude from that regression that schooling has a positive
effect on individuals’ wages, meaning that thanks to their years of
schooling, people manage to get higher wages than y;(0), the wage
they would have obtained without any schooling?
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* We regress In(wage) on a constant and years of
schooling. 5, positive and significant. Can we
conclude from that regression that schooling has
a positive effect on individuals’ wages, meaning
that thanks to their years of schooling, people
manage to get higher wages than y;(0), the wage
they would have obtained without any schooling?

e A)Yes

* B) No, because the R-squared of the regression is
low.

 C) No, because there are omitted variables in this
regression.



No because of omitted variable bias.

ﬁl compares the average wage of people whose years of schooling
differ by one.

People with more schooling tend to come from better-off families.

Maybe the fact that people with more schooling earn more money
does not come from the fact that they completed more years of
schooling, but just comes from the fact their parents are better-off
and could help them get a better job. Even without that extra year
of schooling, would still have obtained better earnings than people
with one year of schooling less.

People with more schooling tend have a higher 1Q than people with
less schooling.

Maybe the fact that people with more schooling earn more money
does not come from the fact that they completed more years of
schooling, but just comes from the fact their 1Q is higher. Even
without that extra year of schooling, would still have obtained
better earnings than people with one year of schooling less, just
because their 1Q is higher.

Parents’ earnings and IQ are omitted variables in this regression.

The R2 of a regression has nothing to do with whether the
regression measures a causal effect or just a correlation.



3, overestimates the effect of schooling on wages.

1 — _

n =¥ (Di-D)(¥i(0)-¥(0))

e Omitted variable bias formula: = p 42220 —
Pr=p ST, (D-D)?

+ Presumably, - X7, (D;—D) (y;(0) — 7(0)) > 0.

* Positive correlation between years of schooling, and y;(0): people
with more schooling than average (D;—D) > 0 probably would
earn more money than the average without any schooling y;(0) —
y(0), e.g. because smarter.

e Therefore, §; > p. B, overestimates the effect of schooling on
wages.




The effect of attending an independent school on
student’s achievement.

e Quote from a report by the National Association of
Independent Schools: “NAIS worked with Gallup for
several years to investigate the life outcomes and well-
being of graduates of independent schools. Gallup’s
analysis found that a higher percentage of NAIS
graduates than public school graduates enrolled in
college immediately after high school (85 percent of NAIS
graduates compared to 69 percent of public school
graduates).”

e These figures come from a regression of Y; (whether
student i goes to college or not) on a constant and D;
(whether student i was in public or independent school).

« B =0.85-0.69 = 0.16.

 Can we conclude from this regression that independent
schools have a positive effect on students’ chances of
going to college?
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 \We regress college attendance of student i on
a constant and whether student i went to an
independent school or a public school. ,31
positive and significant. Can we conclude from
this regression that independent schools have
a positive effect on students’ chances of going
to college?

e A)Yes
* B) No



No because of omitted variable bias.

ﬁl compares the college attendance rate of students in
independent and public schools.

Students in independent schools tend to come from better-off
families => therefore, more likely that their families can pay for
private tutors for them.

Maybe the fact that students in independent schools more likely to
go to college does not come from the fact that independent schools
prepare them better for college, but just comes from the fact their
parents are better-off and can pay for a private tutor for them. Even
if had gone to a public school, would still have been more likely to
go to college thanks to that private tutor.

Parents’ earnings is an omitted variable in this regression.

Because attending an independent school is binary, we can use the
omitted variable bias formula for a binary treatment:

A 1 1
= ATT + — E (0) — E (0
:81 +TL1_ YL( ) n—nyg yl( )
1:D;=1 1:D;=0

Likely that —Y..p —1 :(0) = ——3.. 5 _o ¥:(0) > 0: even if they
nq = . n—-nq "=l . .

had gone to a public school, students going to independent schools

would have been more likely to attend college than students going

to public schools. Therefore, f; > ATT.




What you need to remember (1/2)

We would like to compute ATT = nizi:Dizl(yi(l) — v;(0)): average
effect of treatment among treated pleople.
Idea: reg. Y; on constant and D;, use f3;, coeff. of D;, as estimator of ATT.
Omitted variable bias formula: if yh(l) y;(0) = p (constant treatment
effect), ATT = p but ,3 n ~Xi= 1(Dl D)(yl(O) y(0))

P 1=F ~YL,(Di-D)2
(3, = ATT iif 0 covariance between y;(0) and D;. Otherwise 3; # ATT:
coeff. of D; in reg. of Y; on constant and D; not equal to effect of D; on Y;.

When D; binary, S|mpler omitted varlable formula (holds even if treatment
effect not constant): ; = ATT +— Zl p;=1Yi(0) — — —— 2i:p;=0Yi(0).

Therefore, ,81 = ATT iif treated and untrgated people have same average
outcome without treatment. Otherwise f; # ATT.

Treated and untreated people will have same average outcome without
treatment only if look very similar (same income, same education...).

If two groups look different on important variables, cannot know if
difference in their average outcome comes from treatment or from those
variables. Attribution problem.

E.g.: are insured people healthier than uninsured because insured, or
because smoke less?




What you need to remember (2/2)

You need to know how to use the omitted variable formula to
assess wWhether it is more likely that ,81 > p,or B, <p (B> ATT, or
B, < ATT when treatment binary).

 Omitted variable: variable not included in regression, correlated
with D;, and has an effect on y;(0).

e E.g.:inthe regression of health on a constant and insurance,
smoking is omitted variable.

e When we have an omitted variable in a regression, the coefficient
of D; in that regression does not measure the causal effect of D; on
Y;, only measures the correlation between D; and Y;, but
correlation is not causation.

e Instead of running regression of Y; on constant and D;, we can get a
better measure of the effect of D; on Y; by running regression of Y;
on constant, D;, and some variables correlated with D; and that have
effect on y;(0).

e |ssue: often, we cannot include all the omitted variables in our
regression, because there are some that we cannot even measure:
e.g. “motivation to be in good health” in health insurance example.

 Misleading claims where people confuse correlation and causation
very pervasive, especially in political discourse. You need to know
how to debunk such claims for final.
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Defining what we are looking for: potential outcomes and
treatment effects.

Omitted variable bias.

No omitted variable bias in Randomized Controlled Trials.
Statistical tests in Randomized Controlled Trials.
Application: the effect of health insurance.

Other methods to measure causal effects than RCTs.

The impact evaluation industry
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To avoid attribution problem, we need to form

balanced treatment & control groups.

* You are mayor of town where 4 adults do not have health
insurance. 2 healthy (orange). 2 unhealthy (blue). You do not
observe who is healthy/unhealthy (confidential info).

TAA R

e You have budget to give insurance to 2 people (treatment group). 2
people will remain uninsured (control group). You want to study
effect of insurance on consumption of care, health... Idea: compare
in 1 year outcomes in treatment & control groups.

 You worry that treatment and control groups might not bear same
% of healthy people. If so, you cannot know whether treatment-
control comparison picks effect of health insurance, or the fact
initial health of 2 groups was #. Omitted variable.

 Could you ensure that 2 people who receive health insurance bear
same % of healthy people as those who do not receive insurance? 52
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* To avoid attribution problem, could you
ensure that the 2 people who receive health
insurance bear same % of people healthy as 2
people who do not receive health insurance?

e A)Yes

* B) No



No!

You are the mayor of a town where 4 adults do not have health
insurance. 2 are healthy (orange). 2 are unhealthy(blue). You do not
observe who is in good/unhealthy (confidential info).

You have the budget to give health insurance to 2 people
(treatment group). 2 people will remain uninsured (control group).

To avoid attribution problem, could you ensure that the 2 people
who receive health insurance bear the same % of people healthy as
2 people who do not receive insurance?

No. If you observed that 1 and 3 are healthy while 2 and 4 are
unhealthy, you could give health insurance to, say 1 and 4, while 2
and 3 remain insured. Thus treatment and control groups would be
balanced: they would both bear 50% of healthy people. But the
issue is that you do not observe who is healthy/unhealthy => you
cannot do that. o



What if we randomly choose two people that

receive health insurance? Preliminary question.
e 4 people, 2 orange (healthy), 2 blue (unhealthy). You can give health

insurance (HI) to 2. e
e If randomly choose taz pﬁe, Gpésiblé‘ oitcomes, and

probability that each outcome gets selected is 1/6:

O0is 54 04s 07z a5
HI No H HI NEX

A4 4 R AR 445 4% 4]

Let H; denote the % of healthy people in the treatment group.
e Let H; denote the % of healthy people in the control group.
e Hy and H.: random variables. Depend on lottery outcome realized.

e What is the value of Hy if outcome A gets selected? What is the value
of Hy if outcome E gets selected? Discuss this question with your
neighbor during two minutes.
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e What is the value of Hy if outcome A gets
selected? What is the value of H if outcome
E gets selected?

e A)If Agetsselected Hy = 0.5, while if E gets
selected Hr =0

e B) If A gets selected H = 1, while if E gets
selected Hy = 0.5.



Answer to preliminary question.

4 people, 2 orange (healthy), 2 blue (unhealthy). You can give health
insurance (HI) to 2.

A A

* |f randomly choose those 2 people 6 possible outcomes, and
probab|I|ty that each outcome gets selected is 1/6:

Oiss4 0354 Frere:

f4 4R AR 44 4% 44

 Whatis value of Hy if A selected? What is the value of H if E
selected?

o |If Aselected, Hy = 0.5: 1 healthy person / 2 in treatment group.
o If Eselected, Hy = 0: 0 healthy person / 2 in treatment group.
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What if we randomly choose the two people

that receive health insurance?
e 4 people, 2 orange (healthy), 2 blue (unhealthy). You can give health

insurance(HI)toz.# ﬁ ﬁ A

* |f randomly choose those 2 people, 6 possible outcomes, and
probability that each outcome gets selected is 1/6:
| No HI | G No HI

Oit 4 015 aa 04 as
HI No Hi HI No H

Ad 4R} AR 445 4% 4]

e Hyr: % healthy people in treatment group. H.-: % healthy people in
control group.

 Whatis the expectation of H;? What is the expectation of H.?
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e What is the expectation of H;? What is the
expectation of H.?

e A)E(H;) = 0.4and E(H;) = 0.6.
« B)E(H;) = 0.5and E(H:) = 0.5.
e C)E(H;) = 0.6 and E(H;) = 0.4.




On average, the lottery creates balanced groups!

e 4 people 2 orange (healthy), 2 que (unhealthy). You can give health insurance

ARAR

* |f randomly choose those 2 people, 6 possible outcomes, and probability that
each outcome gets selected is 1/6:

O0is 54 045 0z 45
H No HI HI No HlI

4d 44 Qasdd Q44 54

Hr: % healthy people in treatment group. H.-: % healthy people in control
group.
 Whatis the expectation of H;? What is the expectation of H.?
e E(H;)=1/6%x05+1/6 X 1+1/6 X 0.5+1/6 x 0.5+1/6 X 0+1/6 X 0.5=0.5.
e E(H;)=1/6x%x05+41/6x0+1/6 X 0.5+1/6 x 0.5+1/6 X 1+1/6 X 0.5=0.5.

* On average both groups have 50% healthy people. On average, 2 groups are
balanced! 60



Will the lottery always produce balanced
groups?
e 4 people, 2 orange (healthy), 2 que (unhealthy). You can give health

insurance (HI) to 2. 4 %

* If randomly choose those 2 people, 6 possible outcomes, and probability
that each outcome gets selected is 1/6:

No HI No HI No HI

Oissa 055 as 054 as

Ad 4R} AR 445 4% 4]

 Hy: % healthy people in treatment group. H.: % healthy people in control
group.
e What is probability that Hy = H., meaning that the groups are balanced?

What is probability that Hy # H.-, meaning that the groups are not
balanced? Discuss this question with your neighbor during two minutes. &
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 What is probability that Hy = H., meaning that
the groups are balanced? What is probability that
Hy # H., meaning that the groups are not
balanced?

e A) The probability that Hr = H. is equal to 1
while the probability that Hy # H. is equal to O.

e B) The probability that Hy = H is equal to 0.5

while the probability that Hy # H. is equal to
0.5.

e C) The probability that H = H is equal to 2/3
while the probability that Hy # H. is equal to
1/3.




No, lotteries can produce imbalanced groups.

e 4 people, 2 orange (healthy), 2 blue (unhealthy). You can give health
insurance (HI) to 2. 4 e ®

If randomly choose those 2 people, 6 possible outcomes, and probability that
each outcome gets selected is 1/6:

| No HI | | No HI | | No HI |

Oit 4 015 aa 0ig s
HI No HI HI No HI

A4 4R} AR 44 4% 4]

Hr: % healthy people in treatment group. H.-: % healthy people in control.
 Whatis probability that Hy = H-? Probability that Hy # H/?

e If outcome A, C, D, or F gets selected, Hr = H: = 0.5: groups perfectly
balanced. This has 1/6+1/6+1/6+1/6=2/3 probability of happening.

 If B orE gets selected, groups are perfectly imbalanced. E.g.: if B gets
selected, Hr = 1 and H. = 0. All people who receive HI healthy, all
people who do not receive Hl unhealthy. B or E has 1/6+1/6=1/3
probability of happening.
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Reminder: combinations

e Assume you have n people, and you want to draw k people out of
those n. The number of different subsets of the n people you can

draw is
(Z) - (n—z!)!k! ’

Where for any integer j,j! =j X (j—1) X --- X 1.
 When you randomly assign 1 units out of n to treatment group,
there are (n1) different treatment groups you can create.

e Example: if you have 3 people (a, b, and c) and you randomly assign
2 of them to treatment group, the different treatment groups you
can create are (a,b), (a,c), and (b,c). Three different treatment
groups.

e n=3,ny =2, thereforen—n; = 1.

. (3) =3 _3xaxl 3. The formula works.
2 2!x1! 2xX1x1




But probability that lottery creates very imbalanced
groups diminishes when size of lottery grows...

8 people, 4 orange (healthy), 4 blue (unhealthy). You can give health
insurance HI)to4

TAARARAR

* |f randomly choose those 4 people, follows from previous slide that
8X7X6X5
4X3X2

number of possible draws is (2) = = 70 (draw 4 people
out of 8).
 Foronly 2 lottery draws, groups are perfectly imbalanced:
— 1-3-5-7 receive Hl and 2-4-6-8 do not receive it
— 2-4-6-8 receive Hl and 1-3-5-7 do not receive it.

e =>Chances that lottery produces perfectly imbalanced groups is
2/70 against 1/3 when we randomly assigned 2 people out of 4 to
treatment, as in previous slides.

e Larger lottery has lower proba. of creating imbalanced groups.



...And vanishes when size of lottery goes to infinity.

n people, n/2 orange (healthy), n/2 blue (unhealthy). You give HI to n4

SRR KA

If randomly choose those n; people, proba that HI and control groups
both bear 50% of healthy people goes to 1 when n; — +oo.

With infinity of people, lottery will create perfectly balanced groups.

=> if number of people in lottery large, high chances that produces almost
perfectly balanced groups.

There may be small diffs. between your groups: you randomly send a bit
more healthy people to treatment group than to control group. But
differences unlikely to be large.

When you toss 1000 times a fair coin, possible that you get 505 heads
while you would expect 500: 2.4% chances that this happens. But
extremely unlikely that you get 550 heads: 0.02% chances.

Here same thing:
— You have 2000 people, 1000 healthy and 1000 unhealthy.
— You randomly give HI to 1000 of those 2000 people.

— Maybe your lottery sends 505 healthy people to treatment group and
495 to control group.

— But almost impossible that your lottery sends 550 healthy people to
treatment group and 450 to control group.



Randomization creates groups that are balanced on
all dimensions

If number of people in health insurance (HI) lottery large
enough, Hl and control groups will be balanced on all
dimensions.

Balanced on dimensions you can observe (gender, age...) but
also on dimensions you cannot observe (health, motivation...).

Magic of randomization: even if you do not observe who is
healthy/unhealthy, if your sample is large enough you can be
highly confident that randomization will create groups where
the % of healthy/unhealthy people is very similar.

Randomization solves attribution problem: the only
difference between your treatment and your control group is
that the treatment group receives the treatment.

Any difference between the average outcomes of the two
groups must come from the effect of the treatment, not from
something else.



The Oregon health insurance experiment.

e Medicaid: free health insurance for people with limited
resources.

e Tight eligibility criteria: large % of US population remains
uninsured.

e Oregon wants to expand Medicaid to adults not otherwise
eligible for public insurance, who are Oregon residents, have
been without health insurance for six months, have income
below federal poverty level (FPL), and have assets below $2,000.

e 74,922 individuals, and Oregon only has money to insure 29,834.
e =>3ssign random number to each of 74,922 individuals.

e 29,834 individuals with lowest numbers get enrolled in Medicaid
(treatment group). Others not enrolled (control group).

 Treatment group gets health insurance, control group does not.

e How can you check that lottery indeed creates balanced groups?
Discuss this question with your neighbor during two minutes.
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* How can you check that the lottery indeed
creates balanced groups?

e A) By counting the number of people in the
treatment and in the control group, and
checking that these two numbers are close to
each other.

e B) By comparing the socio-demographic
characteristics of the members of the two
groups and by checking that they are similar.



By running balancing checks!

e Groups have similar demographics. Very small differences.
That’s because the lottery has many people.

Insured by | Uninsured by
lottery lottery

% Female 55.7% 55.0%
% English first language 92.2% 92.4%
% live in rural area 77.3% 77.5%

Average of average income 39,265 USD 39,310 USD
in ZIP code of residence

Average Year of Birth 1968.00 1968.16
Number of people 29,834 45,088
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Randomization creates balanced groups, choice does not.

 Demographics of people insured / uninsured by lottery very similar.
 Demographics of people insured / uninsured by choice very different.

Insured by | Uninsured by
lottery lottery

% Female 55.7% 55.0%
% English first language 92.2% 92.4%
% live in urban area 77.3% 77.5%

Average of average income 39,265 USD 39,310 USD
in ZIP code of residence

Average Year of Birth 1968.00 1968.16
Number of people 29,834 45,088
=
choice choice
Average Years of Education 14.31 11.56
Average Family Income 106,467 46,656

Number of people 8,114 1,281
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s ,[?1 good estimator of treatment effect in an RCT?

n people eligible for a treatment (e.g.: HI). We can give
treatment to n; < n people.

RCT: randomly choose n, people that get treatment.

D;: binary variable equal to 1 if person i randomly selected to
get the treatment, and to O otherwise.

Some time after lottery, we observe Y;, outcome variable we
are interested in for each person included in lottery (e.g.: the
health of each person in the Oregon health experiment 1 year
after lottery).

Y, =D;y;(1) + (1 - D; )YL(O)
We want to estimate ATT = —Zl p,=1i(1) — y;(0)):

average effect of treatment among treated people.

V1Ve cannot compute ATT, as we do not observe

n_lzi:Di=1 yl(O)
Instead: reg. Y; on constant and D;, use f3;, coeff. of D; as

estimator of ATT.
In a RCT, should we expect 3; to be close to ATT?
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* |n a RCT, we regress outcome Y; on D;: binary
variable equal to 1 if person i randomly
selected to get the treatment. Should we

expect f3; to be close to ATT?
° A) Yes
* B) No



Yes! No omitted variable bias.

Because treatment binary, we can use the omitted variable bias
formula for a binary treatment

= ATT + z yl(O)—n - Z y:(0)

lDl i:D;=0

Treatment randomly a55|gned S0 —— Zl :D;= _0Yi(0) should be

1 —Nnq
close to — ZLDL 1 i (0).

Average yl(O) of untreated people should be close to average
y; (0) of treated people. The two groups are formed randomly
=> should be pretty similar.

For instance, balancing checks in the Oregon Health experiment
showed that average of all variables (average year of birth,
average income in ZIP code of residence, etc.) were very close in
the two groups. Therefore, the average of y;(0) should also be
very close in the two groupsI

Thus, ZlD _1yi(0) — m— —— X.i:p;=0 Yi(0) should be small...

... SO ,81 should be close to ATT!
In sessions, you will show that ,31 unbiased estimator of ATT.



What you need to remember

A treatment and control group created by a lottery are balanced on average across
all possible lottery draws.

For some draws, the groups might still be unbalanced.

But if many people participate in the lottery, the number of lottery draws where
the two groups are very unbalanced becomes very small relative to the total
number of possible lottery draws.

=> with very high probability, the two groups will be almost perfectly balanced on
every characteristic, both on characteristics you can observe (income, age) and on
characteristics you cannot observe (motivation...).

You can check this: you can compare the social, demographic, psychological, etc.
characteristics of your treatment and your control groups at the time of the
lottery. You should find that they are very similar. That’s what we found in the
Oregon Health Experiment example.

Therefore, randomization solves attribution problem. At the time of the lottery,
no difference between treatment and control group. If differences start emerging
after treatment group receives treatment, must be due to treatment, not to
something else.

In a RCT, to measure effect of treatment, you can just reg. outcome Y; on constant
and treatment D;. No omitted variable bias, so 8, coeff. of D;, should be close to
ATT. f{ unbiased estimator of ATT.

Only true in RCT: if treatment not randomly assigned and treated people choose
to get treated, it is very likely that there will be omitted variable bias!
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Can we conclude that ATT # 0 whenever (3; # 0?

¢ ATT = =32 yi(D) — — 2712, 3:(0).

nq
e We cannot compute ATT but we use ,@1 to estimate it.
 We have

. 1 1
fr=ATT +-= ) 3@ —=— ) 5 (0)

! i:D;=1 1:D;=0

e Can we conclude that ATT # 0 whenever f3; # 0?
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e Can we conclude that ATT # 0 whenever
B, # 0?

° A) Yes

e B) No



No

* Py =ATT + %Zi:DFl yi(0) —

e One can have B; # 0 while ATT = 0, ifnilzi:Dizlyi(O) —
) —— i.p;=0Yi(0) # 0.

n-n4

¢ —Yip=1i(0) -

nq n-nq
average of y;(0) in our randomly formed treatment and

control groups.

——3.p=0 i (0)

n—nq

Zi;Di:O y;(0): difference between the

* In Oregon health experiment, difference between, say, the
average year of birth of our two groups is close to 0 but not
exactly equal to O.

o =>|ikely that —Zl D _1;(0) —
not exactly equal to 0.

Zl D= Oyl(o) C|Ose but

n—-—nq



Intuition for statistical tests in RCTs
* = ATT + - Zz :D; -1i(0) — _Zi:Dl:O y;(0)

n—nq

e |f ,81 > 0 but cIose to 0, maybe ATT = 0, but out of bad luck
we formed treatment group where average of y;(0) a little bit
larger than in control group.

e On the other hand, if Bl > (0 and far from O, unlikely that
ATT = 0. Having 8, > 0 and far from 0 and ATT = 0 means

that niZlD _1;(0) — m— ZlDl 0 Vi(0) > 0 and far from O:
1

we formed treatment group where average of y;(0) much
larger than in control group. Very unlikely to happen.

e If B; < 0 but close to 0, maybe ATT = 0, but out of bad luck
we formed treatment group where average of y;(0) little
lower than in control group.

e On the other hand, if ,[?1 < 0 and far from 0, unlikely that
ATT = 0.



An example

* Inthe Oregon health experiment, Y; is a binary variable
equal to 1 for individuals who say they are in good
health one year after the lottery, and to O for people
who say they are not in good health.

 Youreg.Y; on aconstant and D;, a binary variable
equal to 1 for individuals randomly assigned to receive
health insurance, and to O for other individuals.

e Assume that you find f; = 0.05, meaning that % of
people who say they are healthy is 5 points higher in
treatment than in control group. Is it plausible that
ATT = 0? Hint: ATT = 0 and 16’1 = 0.05 imply what

1
value ofn—lzi:Dizl y;(0) — 2.i:p;=0Yi(0)? In
the balancing checks, we compared average of 3 binary
variables (female, English first language, live in urban
area) in treatment and control groups. Did we find very
large differences?
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* In the Oregon health experiment, Y; is a binary variable
equal to 1 for individuals who say they are in good
health one year after the lottery, and to O for people
who say they are not in good health.

* You reg. Y; on a constant and D;, a binary variable
equal to 1 for individuals randomly assigned to receive
health insurance, and to O for other individuals.

 Assume that you find ,31 = 0.05, meaning that % of
people who say they are healthy is 5 points higher in
treatment than in control group. Is it plausible that
ATT =07?

e A)Yes

e B)No



No!

e In Oregon health experiment, Y; is equal to 1 for individuals who say they
are in good health one year after the lottery, and to O for people who say
they are not. You reg. Y; on constant and D;, equal to 1 for individuals
randomly assigned to receive health insurance, and to O for others.

e Assume that ,@1 = 0.05, pIausibIe that ATT = 07?
* B =ATT + — ZLD —1Yi(0) — ZLDL 03’1(0)

e B, =0.05&ATT = 0=>— lel L y;(0) —

n-nq

Zi:Di=0 y;(0) = 0.05:

% of people in good health W|thout insurance 5 points higher in treatment
than control group.
e Balancing checks: % females 0.7 points higher in treatment than control, %

of people with English as 15t language 0.2 points lower in treatment than
control, % people living in city 0.2 points lower in treatment than control.

n—-—nq

* % of people in good health without insurance very unlikely to be 5
percentage points higher in treatment than control: 7 times higher than
highest difference on other percentages!

* Very unlikely that lottery creates groups with such large difference of
average y;(0).



Central limit theorem (CLT) in RCTs
° ATT_n_ZlDl 1 yi(D) — ZLDL 13’1(0)

« Lety(1) = _ZLD —1¥i(1) and ¥(0) = n—n, Zi:Di=0yi(O)-
e B =% y(O) Difference between the two averages.
_ZLD =1 (vi(1)- -y(1))?

e LetV(H(1)) =2 - . Estimator of variance of y(1)
(cf. polling). '
e When outcome binary, V(1)) = y(l)(:y(l)).
1
ZLD 0(371(0) Y(O))Z ] )
e LetV(§(0)) = . Estimator of variance of

n—-—nq

y(0) (cf. polling). When outcome binary, V (¥(0)) = y(0)(1- 3’(0))

+ LetV(B)=P G+ GO)). 1
B1-ATT

e If nlarger than 100, approximately follows N(0,1)

distribution.



A 5% level t-test that ATT = 0

* ATT = — ZlDl—lyl(l) ZLDL 1 ¥i(0)

* Let y(l) Zl :D;=1 yl(l) and y(O) —
n_lnl Zl:Di—O yl(())

e [, = y(1)-y(0). Difference between the two averages.
= Zip,= Vi (D=F(1)?

nq
1

= Lip,=0 i (0)=F(0))?

o« LetV(F(1)) =

* LetV(¥(0)) = —

o LetV(B;)=V(F(1)+V (7(0)).
e 5%-level test of ATT = O:

Reject ATT = 0 if —1— > 1.96 or 21— < —1.96.

Otherwise, do not reject ATT = 0.




If ATT = 0, we only have 5% chances of wrongly
rejecting ATT = 0.

B1—ATT
. £ approximately follows N(0,1) distribution.

e IfATT =0,

B1

e Wereject ATT =0 if

approximately follows N(0O,1) distribution.

—~~ —~~

br_ S 196 or—L1

e A N(O,1) variable has 5% chances of being above 1.96 or
below -1.96 => 5% chances of wrongly rejecting ATT = 0.

e Similarly, one_can construct a 10% level test of ATT = 0 by
comparing F1 to 1.64 and -1.64.
1/"@1)
e Similarly, one_can construct a 1% level test of ATT = 0 by
comparing F1 to 2.57 and -2.57.

—~~

v(B1)

< —1.96.




A 95% confidence interval for ATT

e 95% Cl for ATT: -Bl —1.96 /V(Bl),ﬁ1 +1.96 /V(Bl)].

e  When you randomly assign n; units out of n to treatment group, there are

n
(Tl1) different treatment groups you can create.

e B; = y(1)-y(0). Difference between average outcome of units in the
treatment and in the control group => 5; depends on who assigned to

n n n
treatment and control group => (n1) possible values of 51, and (n1)

possible values of the confidence interval.
e For 95% of those values,

ATT € [/3’1 — 1.96 /V([?l),ﬁ”1 +1.96 /V(Bl)].
e 90%Cl: |3, — 1.64 /V(Bl),ﬁ1 +1.64 /V(Bl) .

e 99%Cl: |3, — 2.57 /V(Bl),ﬁ1 +2.57 /V(Bl) .




What you need to remember

In RCT, one cannot conclude that ATT # 0 whenever 3; # 0.

,31=ATT+ ZLD 1)’L(0)—n—nl
,BlstOwhlleATT—O if — ZlD _,yi(0) —

i .D; Oyl(O), so one can have
Zi:Di=0 yi(0) # 0.

However, — Zl p,=1Yi(0) — n_nlzi5Di=0yi(O) cannot be too large

because groups haveﬂbeen formed randomly => one can conclude
that ATT # 0 when [, is “far enough” from O.

n—-—nq

Formally: 5%-level test of ATT = 0: Reject ATT = 0 if b

~ Q/V(Bﬂ
fi_ ~ 196 Otherwise, do not reject ATT = 0.

V(,él) defined in the slides, you should know how to compute it
when outcome is binary.

95% Cl for ATT: [,31 —1.96 /v(ﬁl), B, + 1.96 /v(ﬁl)]. For 95% of

the treatment and control groups we can form, ATT belongs to Cl.

1.96 or
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Findings from Oregon experiment, 1 year after lottery

Uninsured by | Insured by By A

Number of hospital 0.067 0.088 0.021 0.0074
admissions

Outpatient visits last 6 0.574 0.786 0.212 0.025
months

Cholesterol ever checked 0.625 0.739 0.114 0.026
Mammogram within last 12 0.298 0.485 0.187 0.040
months (women >40)

Spent > 30% income in 0.055 0.010 -0.045 0.019
health expenses

Any medical debt 0.568 0.435 -0.133 0.045
Screens positive depression 0.300 0.208 -0.092 0.040
Health is good (reported) 0.548 0.681 0.133 0.026
Alive 0.987 1.00 0.013 0.027
High blood pressure 0.163 0.150 -0.013 0.014

High cholesterol 0.141 0.117 -0.024 0.027



Findings from Oregon experiment, 1 year after lottery

 For “Number of hospital admission”, can you reject at the 5% level the null
hypothesis ATT = 07?

Uninsured by | Insured by I3 "

Number of hospital admissions 0.067 0.088 0.021 0.0074

91



iClicker time

 For “Number of hospital admission”, can you
reject at the 5% level the null hypothesis
ATT = 07

e A) Yes

e B) No



Yes!

e For “Number of hospital admission”, can you reject at the 5% level
the null hypothesis ATT = 07

—

e We reject ATT = 0 at the 5% level if F1_ 5 196 0r—L1_ <

— 1.96.
e For the number of hospital admissions, 8; = 0.021
and /V(,@l)=0.007, therefore AAT,T\ = 3. We reject ATT = 0 at
V(ATT)

the 5% level.

* |ntuition: the difference between average hospital admissions in
the insured and uninsured groups is too large to come only from
the fact that out of bad luck, the insured group has a higher
propensity to go to the hospital than the uninsured group.
Insurance must have an effect.

e =>insurance increases the number of visits to the hospital.
e Strictly positive elasticity of hospital admissions to price.



Findings from Oregon experiment, 1 year after lottery

e For how many of the 10 other outcomes, can you reject at the 5% level the
null hypothesis ATT = 07 Discuss with your neighbor during 2 minutes.

Uninsured by | Insured by By A
lottery lottery V(:Bl)

Outpatient visits last 6 months 0.574 0.786 0.212 0.025
Cholesterol ever checked 0.625 0.739 0.114 0.026
Mammogram within last 12 0.298 0.485 0.187 0.040
months (women >40)

Spent > 30% income in health 0.055 0.010 -0.045 0.019
expenses

Any medical debt 0.568 0.435 -0.133 0.045
Screens positive depression 0.300 0.208 -0.092 0.040
Health is good (reported) 0.548 0.681 0.133 0.026
Alive 0.987 1.00 0.013 0.027
High blood pressure 0.163 0.150 -0.013 0.014

High cholesterol 0.141 0.117 -0.024 0.027



iClicker time

 For how many of the 10 other outcomes, can

you reject at the 5% level the null hypothesis
ATT = 07

e A) For 6 of them
e B) For 7 of them

e C) For 8 of them



Yes for 7 of them...

For the 10 other outcomes, can you reject at the 5% level the null
hypothesis ATT=07

B1
1/V(Bl)
will find that this quantity is greater than 1.96 or lower than -1.96
for:

— Outpatient visits last 6 months

If you compute for the 10 other outcomes in the table, you

— Cholesterol ever checked

— Mammogram within last 12 months (women >40)
— Spent > 30% income in health expenses

— Any medical debt

— Screens positive for depression

— Health is good (reported)

For all these outcomes, you can reject ATT=0.

Difference between treatment and control group large => very
unlikely that these differences are only due to chance, very likely
that due to the effect of health insurance.



. But no for 3 of them.

For the 10 other outcomes, can you reject at the 5% level the null
hypothesis ATT=07?

—~

B1

If you compute =
,/V(ﬂl)

will find that this quantity is included between -1.96 and 1.96 for:

for the 10 other outcomes in the table, you

— Alive

— High blood pressure

— High cholesterol

For all these outcomes, you cannot reject ATT=0.

Difference between treatment and control group not so large =>
possible that comes from small differences between treatment and
control groups created by chance, not from the effect of health
insurance.



Summarizing the results

e When you give comprehensive health insurance for free to people:
 Health expenditures increase: health expenditures elastic to price.

e In particular, they consume more preventive care (cholesterol
checked, mammograms...).

 They are also less likely to have medical debt and to face
catastrophic health expenses (>30% income).

e Maybe because of this, their mental health improves (less likely to
screen for depression), and they report that their health is better.

 On the other hand, their physical health does not improve: not
more likely to be alive after one year, not less likely to have
hypertension or high cholesterol.

 Keep in mind that those results are measured 1 year after people
received health insurance. Will effects on physical health appear in
the longer run? The fact insured people consume more preventive
care suggests that might happen but we need to wait for longer-
term results to know.



What you need to remember

* You need to know how to interpret results from a RCT.

. Blz difference between mean outcome in treatment and
control group.

e Wereject ATT = 0 at 5% level if:
Fr_ ~ 1960r—L_ < 196

e If outcome is not binary, | will give you V(,E’l) or V(ﬁl) SO
you can perform the test.

e If outcome is binary, | may not give V(Bl) or /V(Bl), | may
just give you y(1) and y(0), and then you need to use

~ y(1)(1-y(1 S y(0)(1—=y(0
(1)) = ZRATD) 5ogyy - FOA=IO)

n n—ny

V(ﬁl)=l7()7(1))+117()7(0)) to run the test.
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Not all questions can be answered by RCTs

e |sit bad for employment to increase the minimum wage?

 Neoclassical economists say yes: if expensive to hire someone,
then maybe companies prefer to buy machines to do the job, =>
capital substituted to labor, so high minimum wage reduces
employment.

 Neo-Keynesian economists say no: if workers feel wage fair,
maybe they become more motivated and productive => the
company makes more profits and can hire even more workers.

e 2 conflicting theories => we need to study this question
empirically.

 You cannot run randomized experiment: randomly set the
minimum wage at 55/hour in some companies and at 155/hour
in other companies, and look whether those where minimum
wage = 15S start hiring less or firing more workers. There can be
only 1 minimum wage!

e There are other econometric techniques to answer questions
that cannot be answered through RCTs.

* |If you want to learn those techniques, you should take 140B!
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The impact evaluation industry

e The following consulting firms run RCTs for federal or local
government in the US. They hire econ undergrads.

— Mathematica Policy Research: https://www.mathematica-
mpr.com/

— MDRC: http://www.mdrc.org/
— Many others.

e The following research institutions help researchers conduct RCTs in
developing countries. They also hire econ undergrads.

— J-Pal: https://www.povertyactionlab.org/careers
— Innovation for poverty action: http://www.poverty-action.org/

e Many firms run RCTs with you everyday, to determine how they can
maximize their revenues:

— E.g., Google: whenever you make a search on Google, you are
part of a RCT. Is it better to put the sponsored links left or right
of the screen? What will maximize the chances that people click
on those sponsored links? A random group of users gets their
sponsored links on left of screen, another group gets them on
right, and see who clicks the most!

— Facebook, Capital one, etc.




