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Banks have more than 1 variable to predict
amount applicants will fail to reimburse

* To predict the amount applicants will fail to
reimburse, banks can use their FICO score (score
based on their current debts and on their history of
loan repayments), and all other variables contained

int
Wil
bot

neir application: e.g. their income.
bank be able to make better predictions by using

n variables rather than just FICO score?



Yes, provided people with # incomes but same
FICO fail to reimburse # amounts on their loan.

* Assume FICO score can take only two values: 0 and 100.

* Assume applicants’ income can take two values: 2000 and
4000.

* If average amount people fail to reimburse varies with FICO
and income as in table below, adding applicant’s income to
model improves prediction.

_ Income=2000 Income=4000

FICO=0 2000 1000
FICO=100 500 200

* People with different income levels but with same FICO score
fail to reimburse different amounts on their loan => adding
income to your prediction model will improve quality of your
predictions.



Gmail has more than 1 variable to predict
whether an email is a spam.

* To predict whether email is spam, Gmail can use variable

equal to 1 if “free” appears in email, and variable equal to 1 if
“buy” in email.

* If percentage of spams varies as in table below, adding the
“buy” variable to the model will improve prediction.

Email has “buy” in it Email doesn’t have “buy” in it

Email has “free” in it 3% 1.5%

Email doesn’t have “free” init 1% 0.5%

* Emails which have “buy” and “free” in it are more likely to be
spams than emails which only have “free” in it.

* Emails which have “buy” but not “free” in it are more likely to
be spams than emails which neither have “buy” or “free” in it.

* =>adding “buy” variable will improve predictions. ‘



Multivariate regression

* In these lectures, we are going to discuss OLS
multivariate regressions, which are OLS regressions

with several independent variables to predict a
dependent variable.




Roadmap

1. The OLS multivariate regression function.

2. Estimating the OLS multivariate regression function.
3. Advantages and pitfalls of multivariate regressions.
4. Interpreting coefficients in multivariate OLS regressions.



Set up and notation.

 We consider a population of N units.

— N could be number of people who apply for a loan in
bank A during May 2017.

* Each unit k has a variable y;, attached to it that we do
not observe:
— In loan example, vy, is variable equal to the amount

applicant k will fail to reimburse on her loan when her
loan expires in May 2018.

* Eachunit k also has J variables x;, X2k, X35,.-., XJi
attached to it that we do observe:

— In the loan example, x4 could be FICO score of
applicant k, x,; could be the income of that applicant,
etc.



Prediction = function of xqy, X2k, X3k, X -

* Based on value of xy, X2, X3,..., Xj; Of each
unit, we want to predict her yy..

 E.g.:in the loan example, we want to predict the
amount that unit k will fail to repay based on her
FICO score and her income.

* Prediction should be function of xyy,..., X,
f(xlkr'"l x]k)'

* In these lectures, we focus on predictions which
are affine function of xq,..., xyi: f(xlk,...,
Xjr) = Co + €1 X1k + -+ + €;xpy, for | + 1 real
humbers ¢y, Cq,..., Cj.



Prediction error: y;,, — (CO T C1 X1 + -+ C]X]k)

* Based on value of xy,..., Xj; of each unit, we predict her
Yk

* Our prediction should be function of xyy,..., Xk, f (X1x,-s
X]k)

* We focus on affine functions of xyy,..., xx: f(xlk,..., x]k) =
Co + C1 X1 + -+ + CjXjg, for J + 1 real numbers ¢, c4,..., ¢;.

* Yk — (Co + C1Xq) + o F c]x]k), difference between
prediction for y; and actual value of y,, is prediction error.

* Large positive or neg. y; — (CO + Cc1Xqp + o0+ c]x]k) mean
bad prediction.

* Vi — (co + Cc1Xqp + -+ c]x]k) close to 0 means good
prediction.



Goal: find the value of (¢, ¢4,..., ¢;) that minimizes

2
=1 (}’k — (Co + C1 X t o0 C]x]k))

2
* legzl (yk — (CO + C1 X1k + -+ C]x]k)) iS pOSitive.
=> minimizing it = making it as close to 0 as
possible.

2
o |f leg=1 (yk — (CO + C1Xqp + 000 C]x]k)) IS as
close to O as possible, means that the sum of

the squared value of our prediction errors is as
small as possible.

 =>we make small errors. That’s good, that’s
what we want!



The OLS multivariate regression function

e |et

2
(VO; Y1, .- ;V]) — argmin(co, C1yeer CJ) legzl (.VR - (CO + C1 X1 + 0 F C]x]k))
. (]/O,yl, ...,y]): value of (¢, ¢q,..., ¢;) minimizing
2
N
k=1 (yk = (co+crxyp + -+ C]x]k)) -
* Wecallyy + y1x1% + -+ + ;X the OLS multivariate regression
function of y, on a constant, Xy, X2k, X3k,-r XJk-

* Welety, =vyo + y1X1x + - + ¥; X5 denote prediction from
multivariate OLS regression.

* Welete, = y, — Vi: prediction error.

* We have y, =y + €.



How can we find (yo,yl, e y])?

. (]/O,yl, ...,y]): value of (¢, ¢y,..., ¢;) minimizing

2
Yk=1 (3’k — (co + 2y + 0+ C]x]k)) -

* To minimize a function of several variables, we differentiate it
wrt to each of those variables, and we find the value of (¢,
Cqyeee c]) for which all those derivatives are equal to 0. No

need to worry about second derivatives because objective
function convex.

 What is derivative of Y¥_, (yk — (CO + C1Xqp + o+

2
c]x]k)) with respect to ¢y ? Discuss this question with your
neighbor for 2mns.
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iClicker time

e What is the derivative of Zﬁ’zl (yk — (Co + C1 X1 T

2
S c]x]k)) with respect to ¢,?
a) 2 2112’:1 (yk — (CO + C1 X1k + -+ C]X]k))
b) Yoj=1 —2 ()’k — (co + crxxgp + o+ C]x]k))

c) —Z’,Ll (yk — (CO + C1Xqp + o+ c]x]k))



N
2 —2 (yk — (CO + C1 X1k + -0+ C]x]k))
k=1

2
e Derivative of Z’,le (yk — (CO + C1 X1 T 0+ C]x]k))

with respect to ¢y is
N —2( — (c + Xy + -+ Cix )) : P4ASum+chain
k=1 Yk 0 T C1X1k 1Xik) ) -

rule.

 What is the derivative of Z’,le (yk — (Co + C1Xqp + o+

2
c]x]k)) with respect to ¢4 ? Discuss this question with

your neighbor for 2mns.
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iClicker time

e What is the derivative of Zﬁ’zl (yk — (Co + C1 X1 T

2
S c]x]k)) with respectto ¢;?
a) ZIIX=1 —2 (yk — (CO + C1 X1k + .-+ C]x]k))

b)—2 ¥h—1 X1k (Yk — (o + crxyp + o+ C]x]k))



Yk=1—2X1k ()’k — (Co T C1 X + 0 F C]x]k))

2
* Derivative of Z’,\Y:l (yk — (CO +Cc1Xqp + 00+ C]x]k)) wrt ¢¢:

—2 Z’,le X1k (yk — (co + CiXqp + 0+ c]x]k)) : PASum+chain
rule.

2
* Derivative of Z’,le (yk — (CO + CiXqp + 0+ c]x]k)) wrt ¢,:

—2 Y R=1 X2 (Yk - (Co + C1 X + 0 F C]x]k)) :

2
* Derivative of Z’,le (yk — (CO + CciXqp + 00+ C]x]k)) wrt ¢;:

—2 Z’,le Xk (yk — (co + C1Xqp + o c]x]k)) :



(Vo;h, ---,)/]) iIs the solution of a system of | +
1 equations with / + 1 unknowns.

. (yo,yl, ...,y]): value of (cq, ¢4, ..., c]) for which all those derivatives
are equal to O.

* Thus, we have:
—2 k=1 (Yk — (o + Vaixap + - + V]x]k)) =0

—2 V=1 %1k (Yk — (Yo +vaxie + - + V]x]k)) =0

—2 V=1 %k ()’k — (Yo +Vaixap + - + V]x]k)) =0
. (yo,yl, ...,y]) is the solution of a system of J + 1 equations with
J + 1 unknowns.

* If we give the values of the yys, of the xy;s, ..., of the xj;,s to a
computer, can solve this system and give us value of (yo, Vi) eee) y]).



What you need to remember

Population of N units. Each unit has J+1 variables attached to it: y;
is a variable we do not observe, X, X2k, X3,..., Xji are variables
we observe. We want to predict yj based on Xy, Xok, X35,-) Xk -

E.g.: bank wants to predict amount an applicant will fail to
reimburse on her loan based on her FICO score and her income.

Our prediction should be function of xyy,..., Xk, f (X1x,-» XJk)-
Affine functions of X1, X2k, X3k,es Xjg: Co + C1X1) T+ + Cj Xk,
for some real numbers (¢, ¢y,..., ¢}).

Good prediction should be such that ¢, = vy, — (co + cyxqp + 0+
c]x]k), our prediction error, is as small as possible for most units.

Best (¢, ¢y,..., €;): minimizes P (yk — (CO + 1 X1 + 0+
2

C]X]k)) .
We call that value (¥o, Y1, -, ¥})- Yo + Y1X1k + -+ + V)i is OLS
regression function of y; on aconstant, Xy, Xz5, X3i,er XJic-

(yo, Y1, ...,y]): solution of system of J+1 equations with J+1
unknowns: derivatives of Y.n-4 ()’k — (Co +CiXq + o+

2
C]x]k)) wrt to Co, C1,---) C] must = 0 at ()/0, Y1, ,y])



Roadmap

1. The OLS multivariate regression function.

2. Estimating the OLS multivariate regression function.

3. Advantages and pitfalls of multivariate regressions.

4. Interpreting coefficients in multivariate OLS regressions.
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We cannot compute ()/0, Yir - V])

* Our prediction for y, based on a multivariate regression is yo +
Y1X1k + -+ + VyXjk, the OLS multivariate regression function.

* =>to be able to make a prediction for a unit’s y; based on her x4,
X2kr X3k, Xjk, We need to know the value of (yy, ¥4, -, y]).

* Under the assumptions we have made so far, we cannot compute

—2¥ R4 (Yk — (Vo + V1 X1 + 0+ V]x]k)) =0
—2 Y k=1 X1k (Yk — (Vo + V1 X1 + o0+ V]x]k)) =0

—2 Y N=1 Xk ()’k — (Vo + V1 X9 + ot V]x]k)) =0
* To solve this system, we need to know the y;s, which we don’t!

* E.g.:the bank knows the FICO score and income (x1; and x»;) for
each applicant, but does not know the amount each applicant will
fail to reimburse in April 2018 when loan expires (y;).



A method to estimate (yo, 12T y])
 We draw n units from the population, and we measure the
dependent and the independent variable of those n units.

* Foriincluded between 1andn,Y;, Xq;,..., X;; = value of

dependent and independent variables of ith unit we
randomly select.

. ()/0,)/1, ...,y]): value of (¢, ¢y,..., ¢;) minimizing

2

Y =1 (Yk - (Co + C1Xqp + o F C]x]k))

e =>t0 estimate (]/O,yl, ...,y]), we use gco, C1,-.-, ;) Minimizing
?:1 ()/l - (CO + C1X1i + + C]X]l))

* (¥, 71, -, ;) denotes that value.

* Instead of (cy, cq,..., c]) minimizing sum of squared errors in
population, use (¢, ¢y,..., ¢;) Minimizing sum of squared
errors in sample.

* If we find a good prediction function in sample, should also

work well in entire population: sample representative of
population.



The OLS regression function in the sample.

e Let

2
ey CJ)ERIHT Yi=1 (Yi - (CO t o X+t C]X]i))

* Wecall yy + y1X1; + -+ ¥,X;; the OLS regression function
of ¥; on a constant, X;;,..., and Xj; in the sample.

(?0' ?1’ B ]7]) = ar’gmin(COI C1,

. ()70, Viy eees )7]): coefficients of the constant, Xy;,..., and X;.

o Let¥; =Py + 1 X1 + - + 7;X);. Vi is the predicted value
for Y; according to the OLS regression function of Y; on a
constant, Xy;,..., and Xj; in the sample.

» Leté; = Y; — V. é;: error we make when we use OLS
regression in the sample to predict ;.

* WehaveV; =Y, +é,.



How can we find ()70, Vi, o) )7])?

. (]70,)71, ...,)7]): value of (¢, ¢1,..., ¢;) minimizing

2
?=1 (Yl — (CO + C1X1i + -4 C]X]l)) .

* To minimize a function of several variables, we differentiate it
wrt to each of those variables, and we find the value of (¢,
Cqyeee c]) for which all those derivatives are equal to 0. No

need to worry about second derivatives because objective
function convex.



The derivatives of the objective function

2
e Derivative of }i*, (Yi — (CO + ¢ Xq; + -+ c]X]i)) wrt Cp:

-2y, (Yi — (co + ¢ Xq; + 0+ c]X]l-)) :P4Sum+chain rule+
P2Sum

2
* Derivative of Y-, (Yi — (CO + ¢ Xy + -+ c]X]l-)) wrt ¢q:

—2 X1 Xy (Yi —(co+ Xy + -+ C]X]i))

2
e Derivative of Y-, (Yi — (CO + ¢ Xq; + -+ c]X]l-)) wrt ¢;:

—2 Z?:lX]i (Yl — (CO + C1X1i + .-+ C]X]l))



()70,)71, ...,)7])= solution of systemof | + 1
equations with / + 1 unknowns.

. (}70,)71, ...,)7]): value of (¢, ¢y,..., ¢;) for which all derivatives = 0.
—230 (Yi — (Po + 71 Xei + - + ?]X]i)) =0

—2 %0 X4 (Yi — (?0 + V1 X1+ -+ V]X]i)) =0

—2 3% X (Y = (B0 + PaXai + -+ 7Xp1)) =0

 To compute (]70, V1, ...,)7]), we:
— draw n units from population, measure their Y;s and

(XliJ ...,X]i)S
— set up above system plugging in actual values of the Y;s and
(XliJ ...,X]i)S

— Yields system of | + 1 equations with J + 1 unknowns, the
()70,)71, ...,)7])5: all the remaining quantities are real numbers.

— Ask a computer to solve that system.



The Is command in E-views solves for you that

system of | + 1 equations with / + 1 unknowns.

* We have:
—2 X1 (Yi - ()70 + V1 Xy + o+ V]X]i)) =0

—2 X1 X1 (Yi - (]70 + V1 Xy + o+ ?]X]i)) =0

—2 3 Xy (Y; = (B0 + PaXar + -+ 7Xp1)) =0

e To compute ()70,)71, ...,)7]), we:
— draw n units from population, measure their Y;s and
(Xli' ...,X]i)S
— set up system plugging in values of ;s and (Xy;, ..., Xj;)s
— Ask a computer to solve that system.
* Thatis what the “Is” command in eviews does, where the Y;s are

the values of the first variable after “Is” command, and the
(X1i, ..., Xji)s are the values of the variables after “c”.
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Doing E-views’ job once in our life.

Gmail example. Assume we sample 4 emails (n = 4).

For each, we measure Y;: whether spam, X;;: whether has
word “free” in it, and X,;: whether has word “buy” in it.

Email | % | | Xa

1 1 1 1
2 0 1 0
3 1 1 0
4 0 0 0

E.g.: 15t email we sample is a spam, and has words “free” and
“buy” in it. 2"9 email is not a spam, and has “free” in it but not
“buy”, etc.

If you regress Y; on constant, X;;, and X5;, what is value of
(Yo, V1, V2)? Hint: you need to write system of 3 equations
and three unknowns solved by (¥, ¥1,¥2), plug-in values of
Y;, X1;, and X,; given in table into system, and then solve
system. You have 4 minutes to find answer. .



iClicker time

Email | % | | Xa

© rr O B
O B -k B
o O O ¥

1
2
3
4

* If you regressY; on a constant, X;;, and X5;, what
will be the value of (¥, ¥1,72)?

3) ?0 — O, )71 — 05, ?2 = (.5.
b) ?0 — 0.5,]71 — 1,]72 — O
) Vo=—-Lvy1=0,7, =0.
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?O — O; ?1 — 05, ?2 — 05

* n=4and] = 2, so we have (we can forget the -2):
o1 (Y = (o + 71Xy + 72X3)) =0
21 X1 (Yi — Do + 71X1; + 72X3)) =0

i1 XZi(Yi — (Yo + V1 X1 + )72X2i)) =0
* Plugging in values of Y;, X1;, and X,; in table, yields:
2—=4Y9—3y1—v2=0
2=3Y0—371—V2=0
1—Vo—71—v2=0
* Subtracting equation 1 from equation 2 yields y, = 0.
* Plugging ¥, = 0 yields system of 2 equations & 2 unknowns:
2—3y;—7,=0
1-y1—-72.=0
e Subtracting equation 2 from 1 yields
1 — 2y; = 0, which is equivalent to y; = 0.5.
* Pluggingy; = 05into1 —jy; — ¥, = Oyields ¥, = 0.5.



()70,)71, ...,)7]) converges towards (yo,yl, ...,y])

* One can show that as for univariate regressions, the
estimators of multivariate regression coefficients
converge towards the true multivariate regression
coefficients (those for the full population).

* nl—i>r-Poo(?O' ?1' ""?]) = ()/O' V1 "")/])'

* Intuition: when the sample size becomes large, the
sample becomes similar to the population.



Using central limit theorem for the ;s to
construct tests and confidence intervals.

* Formula of the variance of multivariate regression coefficients
complicated No need to know it, E-views computes it for you.

e Ifn =100, Yithi foIIows normal distrib. mean 0 and variance 1.

* We can use this to test null hypothesis. Often, want to test y; = 0.
* If we want to have 5% chances of wrongly rejecting y; = 0, test is:

< —1.96.

/\ AN

> 1.96 or

Rejecty; = 0 if Y
j
1/V(VJ) ,/V(T’j)

Otherwise, do not reject y; = 0.
* We can also construct a 95% confidence interval for y;:

[yj —~ 1.96\/7)7]-),)7]- + 1.96\/@].




Assessing quality of our predictions: the R?.

* To assess the quality of our predictions, we are going to
use the same measure as with the OLS affine regression:

lon 42
R? = 1 — o=l

- l271'/L=1(Yi_17)2
n
* 1- MSE /sample variance of the Y;s.

e As in the previous lectures, we have that R? is included
between 0 and 1.




What you need to remember

Prediction for y, based on multivariate regression is y, +
Y1X1k + =+ VyXp, With (]/O,yl, ...,y]): value of (CQ' C1yeeer C1)
minimizing Z’,le (yk — (co + CixXqp + o0+ c]x]k)) :

We can estimate g)’o:h» - y]), if we measure y,s for
random sample of population.

For every i between 1 and n, Y;, X4;,..., X;; = value of
dependent and independent variables of ith unit we
randomly select.

To estimate (yo,yl, ...,y]), find (co, ¢4,..., ;) Minimizing

2
?=1 (Yl — (CO + C1X1i + oo 4 C]X]l)) .

* Differentiating this function wrt to (¢, ¢y,..., ¢;) yields system

of J+1 equations with J+1 unknowns.

* We solved system in simple example, you should know how to

do that.

* We used the central limit theorem to propose 5% level test of

Yj = 0, and to derive a 95% confidence interval for y;.



Roadmap

1. The OLS multivariate regression function.

2. Estimating the OLS multivariate regression function.

3. Advantages and pitfalls of multivariate regressions.

4. Interpreting coefficients in multivariate OLS regressions.
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Adding variables to a regression always
improves the R?

Assume you regress a variable Y; on a constant and on a variable X;;.
Then, you regress Y; on a constant and on two variables X;; and X5;.

The R? of your second regression will be at least as high as the R? of
the first regression.

Adding variables to a regression always increases its R?.

=> a regression with many variables gives better predictions for the
Y;s in the sample than a regression with few variables.



Example

Sample of 4601 emails, for which you observe whether
they are a spam or not.

You regress spam on constant and variable equal to the
percentage of the words of the email that are the word
“free”.

Eviews command: Is spam c word_freq_free.
s the R? of that regression low or high?

Dependent Variable: SPAM
Method: Least Squares
Date: 05/16/17 Time: 18:22
Sample: 1 4601

Included observations: 4601

Variable Coefficient  Std. Error t-Statistic Prob.

C 0.372927 0.007555 49.35958 0.0000
WORD FREQ FREE 0.201984 0.023411 8.627873 0.0000
R-squared 0.015928 Mean dependent var 0.394045
Adjusted R-squared 0.015714 S.D. dependent var 0.488698
S.E. of regression 0.484843 Akaike info criterion 1.390450
Sum squared resid 1081.098 Schwarz criterion 1.393247
Log likelihood -3196.730 Hannan-Quinn criter. 1.391434
F-statistic 74.44020 Durbin-Watson stat 0.032029

Prob(F-statistic) 0.000000




Example

* You regress spam variable on a constant, a variable equal to %
of words of email that are the word ”free and a variable equal
to % of words of the email that are the Word money.

* Eviews command: Is spam c word_freq_free word _freq_money.

* R? higher in that regression than in previous one. R%=1-
average of square predlctlon errors / variance of the spam
variable. => higher R? means lower sum of square prediction

errors => better predictions.
Dependent Variable: SPAM
Method: Least Squares
Date: 05/16/17 Time: 18:23
Sample: 1 4601
Included observations: 4601

Variable Coefficient Std. Error t-Statistic Prob.

C 0.358449  0.007483  47.90281 0.0000
WORD _FREQ FREE 0.141932  0.023370  6.073346  0.0000
WORD FREQ MONEY 0.220177  0.016122 13.65706  0.0000

R-squared 0.054291 Mean dependent var 0.394045
Adjusted R-squared 0.053879 S.D. dependent var 0.488698
S.E. of regression 0.475350 Akaike info criterion 1.351121
Sum squared resid 1038.953 Schwarz criterion 1.355317
Log likelihood -3105.255 Hannan-Quinn criter. 1.352598
F-statistic 131.9791 Durbin-Watson stat 0.100016

Prob(F-statistic) 0.000000




Should we include all variables in regression?

Sometimes we have many potential variables we can include in our
regression.

E.g.: Gmail example. We could use whether the words “free”, “buy”,
“money” appear in the email, the number of exclamation marks, etc.
to predict whether the email is a spam.

Previous slides suggest we should include as many variables as
possible in the regression, to get the highest R?.

If we do this, we run into a problem called overfitting: we will make
excellent predictions within the sample we use to run the regression
(high R?), but bad predictions when we use regression predict
dependent variables of units outside of our sample.

Issue: we do not care about in-sample prediction: for the units in the
sample, we already know their Y;, no need to predict them. It’s for
the units not in the sample, for which we do not know the value of
their dependent variable that we want to make good predictions.



Introduction to overfitting, through an example

Assume that in your data, you only have 3 emails.

Assume also that for each email, you measure 3 variables:
— Y;: whether the email is a spam
— X41;: whether the minute when email was sent is an odd number
— X5;: whether the second when email was sent is an odd number.

X4; and X,; should be poor predictors of whether email is spam: no
reason why spams more likely to be sent on odd minutes/seconds.

Assume that the values of Y}, X;, X»; are as in the table below.

Email | v X i
1 1 1 1

2 0 1 0
3 0 0 0

Find (Co, Cq, Cz) such that Zlgzl()/l — (CO + C1X1i + C2X2l'))2=0.
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iClicker time

* Assume that the values of ¥;, X;;, X5; are as in the table
below.

Email | % | | Xa
1 1 1 1

2
3 0 0 0

2
* (cg, €1, C3) such that 21'3=1(Yi — (co + 1 Xq; + C2X2i)) =0
IS:

a) co=0,¢c,=0,c, =0.
b)co=0,¢c;=0,c, = 1.
c) co=0,c=1,¢c, = 1.
d)co=1,¢c=1,¢c, = 1.
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co=0,¢, =0,¢c, =1.
Email | Y| X | X
1 1 1 1

2 0 1 0
3 0 0 0
* (co, €1, €¢z) suchthat X0_, (V; — (co + c1 Xq; + chzl-))2=O is
solution of this system:
1—(co+c1+¢c,) =0
0—(cg+cy)=0
0—(cy) =0
* You can check that solutioniscy =0,c; =0, ¢, = 1.

* Now assume that in this example, you regress Y; on a
constant, X;; and X,;. Let ¥y, V1, V> respectively denote the
coefficient of the constant, of X;;, and of X,; in this
regression. What will be the value of ¥, ¥1,7,? Discuss this
question during 2 minutes with your neighbor.
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iClicker time

* Values of Y}, X1;, X,; are as in the table below.
Email | Y X K
1 1 1 1

2 0 1
3 0 0 0

* You regress Y; on a constant, X{; and X5;. g, V1, V>
denote the coefficient of the constant, of X;;, and of X5;
in this regression. What will be the value of ¥4, 71,7,

a) Yo = 0,41 =0,y = 0.
b) Vo =0,y1 =07, = 1.
c) Vo=0y1 =17, =1
d) Po=1701=179, =1
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?O — 01?1 — 01?2 = 1.

2

* (Jo,71,72): minimizer of ¥} 1(Y (co + 1 Xy + C2X2i)) :
2

* For any (Co, C1, Cz) Z 1(Y (CO + C1X1l + Czle)) > 0.

e |ffora (Co, Cq, Cz) Z 1(Y (CO + C1X1l + Czle)) — O
this (C0,2C1, C5) is that minimizing Zl 1( — (cog + c1X1; +
CZXZL)) , 50 (¥o,¥1,Y2) equal to that (¢, ¢4, C,).

o T3 (Y= (co + 1 Xqi + 02X20) = 0ifcg =0, ¢, =0, ¢, = 1.

* Therefore, ¥ = 0,; = 0,¥, = 1.

* Prediction function for whether email spam: 0 + 0 X X;; +
1 X Xy;

e =>you predict that all emails sent on an odd second are
spams while all emails sent on an even second are not spams.

* This regression has an R? = 1: regression predicts perfectly
whether email are spams, in your sample of 3 observations.

Do you think that this regression will give good predictions,
when you use it to make predictions for emails outside of the
sample of 3 emails in the regression? 43
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* =>in this example, prediction function for whether the email
isaspamis 0+ 0 X X;; +1 X Xy;

e =>you predict that all emails sent on an odd second are
spams while all emails sent on an even second are not spams.

* This regression has an R* = 1: regression model predicts
perfectly whether email are spams, in your sample of 3
observations.

* Do you think that this regression will give good predictions,
when you use it make predictions for emails outside of the
sample of 3 emails you use in the regression?

a) Yes
b) No



No!

* There is no reason why emails sent on odd
seconds would be more likely to be spams than
emails sent on even seconds.

* =>when you use the regression to make
predictions for whether emails out of your
sample are spams or not, you will get very bad
predictions.

* This is despite the fact that in your samgle, your
regression yields perfect predictions. R“ =

* So what is going on?



¢
Y,

R? of reg. with as many variables as units =1...

You have n observations, and for each observation you measure
dependent variable Y; and n — 1 independent variables X1;,..., X;,—1;-
You regress Y; on constant, Xy;,..., X;;_1;.

(Yo, V1, --» ¥n—1), coefficients of constant, X;,..., X,,_1;: value of (CO2
C1, -+, Cp—1) Minimizing Z’{‘zl(Yi —(cg + 1 Xy + - + cn_an_ll-)) :

We can make each term in summation =0. Equivalent to solving:

— (CO + C1X11 + .-+ Cn—1Xn—1,1) =0

—(co+c1Xip + -+ g1 Xn_12) =0

Yn — (CO + C1X1n + -+ Cn_an_lln) =0

System of n equations with n unknowns => has a solution.

= (Yo, 71, -+-» ¥n—1) is the solution of this system, and

oA " 2
?=1(Yi — (Yo + V1 X1y + -+ Vn—1Xn_1i)) =0

—> MSE in this regression =0
— R%=1: R?= 1- MSE/ variance of spam variable.



... Even if independent variables in regression
are actually really bad predictors of Y;

R? of reg. with as many independent variables as units=1.

Mechanical property, just comes from the fact that a system a
n equations with n unknowns has a solution.

True even if independent variables actually bad predictors of Y;.

E.g.: previous example, where we regressed whether an email is
spam or not on stupid variables (whether it was sent on an odd
second...) still had R? of 1.

R#=1 means that regression predicts Y; perfectly well in sample,
but probably will yield bad predictions outside of the sample.

Overfitting: we give ourselves so many parameters we can play
with (the coefficients of all the variables in the regression) that we
end up fitting perfectly the variable Y; in our sample, but we will
make very large prediction errors outside of our sample.



Another example of overfitting

Figure below: 11 units, with their values of a variable X;; and of a
variable Y;.

Black line: regression function you obtain when you regress Y; on
a constant and X4;.

Blue line: regressmn functlon ) you obtam when you regress Y; on a

15

10

=10 }

—-15

Which of these two regressions will have the highest R%?
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15

i =4 m 0 2 1 6
* Which of these two regressions will have the highest R??
a) Theregression of Y; on a constant and X4;.

b) Thelcr)egression of Y; on a constant, Xy;, Xliz, X1i3, X1i4,....,
X1 .



Regression of Y; on constant, Xq;, X1;%,., Xq: 0.

Regression of Y; on constant, X1, X1;°, X1;°>, X1;%)wnr, X1;7° has 11
observations and 11 independent variables. R“=1. Blue line fits perfectly
black dots.

Black line does not perfectly fit black dots => regression of Y; on a constant
and X;; has R? <1.

15

10+

Goal of regression is to make prediction for value of dependent variable of
units not in your sample, for which you observe the xs but not y.

Assume that one of these units has x = —4.5. Do you think you will get a
better prediction for the y of that unit using regressmn of Y; ona constant
and X1;, or regression of Y; on a constant, X1;, X1;%, X1;°, Xll oy X110

50
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15

10

-10 |

—15 i i L i i
-6 —4 ) 0 2 4 B

 The goal of a regression is to make a prediction for the value of
the dependent variable of units not in sample, for which you
observe the xs but not y.

e Assume that one of these units has x = —4.5. Do you think you
will get a better prediction for the y of that unit using regression
of Yé on cgonstaépt and X ilé or regression of Y; on constant, Xy;,
Xli ’ Xli ’ Xli ’e Xll
a) Wewill geta better prediction using the regression of Y; on a
constant and Xy;

b) We will get a better predlctlon using the regression of Y; on a
constant, X4;, Xll ) Xll ) Xll - Xu



Better prediction using reg. of Y; on constant & X;

* Prediction of the y of unit with x = —4.5:
— according to reg. of Y; on a constant, X4;, Xliz,...., Xliloz 13.
— according to reg. of Y; on a constant and X;;: -12.

* Insample, units with x close to -4.5 have y much closer to -12 than to
13=> regression of Y; on a constant and X;; will give better prediction.

15

10

[}
T

=]
T

-10 |

_]_5 1 1 L L L
-6 -4 -2 0 2 4 B

e Again, regression with many independent variables might give very
good in-sample prediction but very bad out of sample prediction
* But making good out of sample prediction is goal of regression.

« =>Comparing R? of 2 regs. is not right way to assess which will give
best out of sample predictions. Reg. with many variables always has
very high R? but might end up making poor out of sample predictions.




Instead, use a training and validation sample

You start from sample of n units for which you measure Y;, dependent
variable, and X;,..., Xj;, independent variables.

Randomly divide sample into two subsamples of n/2 units. Subsample 1:
training sample. Subsample 2: validation sample.

In training sample, you estimate the regressions you are interested in.
For instance, in training sample:

— Regression 1: Y; on a constant and Xj;,..., X;;. Coefficients ()70,)71, ...,)7]).

— Regression 2: Y; on a constant and Xy;. Coefficients (,5’0,,[?1).

Then, compute squared prediction error according to each regression for units
in validation sample.

For instance, for each unit in validation sample, compute:
2
— (Yl- — (Yo + V1 X1; + -+ ?]X]i)) : squared pred. error with Reg. 1.

— (Yi — (,30 + ﬁlei))Z: squared pred. error with Reg. 2.

Finally, choose regression for which sum squared prediction errors for units in
validation sample lowest.

Intuition: you want to use the reg. that gives best out of sample predictions. By
choosing reg. that gives best predictions in validation sample, you ensure that
your regression will give good out of sample predictions, because you did not
use the validation sample to compute your reg. coefficients.



Machine learning in 2 minutes

Using training and validation sample = key idea underlying machine
learning methods (statistical methods more sophisticated than, but
inspired from multivariate regressions, and that are used by tech
companies to do image recognition, spam detection, etc.)

Goal: teach a computer to recognize whether an email is a Spam,
whether a picture of a letter is an “a”, a “b”, etc.

Train the computer in a sample of emails for which the computer
knows whether the email is a spam and many other variables (all the
words in the email, etc.).

The computer finds the model that predicts the best whether the
email is a spam given all these variables, in the training sample.

Then, check whether prediction model works well in validation
sample, where you also know which emails are spams or not.

If the statistical model also works well in the validation sample,
implement method in real life to predict whether new emails
reaching Gmail accounts are spams or not. If email predicted to be
spam, send to junk box. Otherwise, send to regular mail box.



Machine learning often works, but not always

30 1@3 4

Wednesday May 2, 2018

all-day Quverture des centres : retours Nante...

140A
Suggested Location: Freebirds World Burrito

55



What you need to remember

Great advantage of multivariate regression over univariate
regression: improves the quality of our predictions.

However, putting too many variables in regression might result in
overfitting: regression fits very well ys in sample, but gives poor out
of sample predictions.

For instance, a regression with as many independent variables as
units will automatically have a R? = 1, even if those independent
variables are actually poor predictors of the independent variable.

=> comparing R?s not good way to choose between several regs
Instead, you should:
— randomly divide sample into training and validation sample
— estimate your regressions in the training sample only

— compute squared predicted errors according to each regression
in validation sample

— choose regression for which MSE in validation sample is
smallest.

Training / validation sample idea underlies machine learning models
used for spam detection / image recognition, etc. by tech
companies.



Roadmap

1. The OLS multivariate regression function.

2. Estimating the OLS multivariate regression function.

3. Advantages and pitfalls of multivariate regressions.

4. Interpreting coefficients in multivariate OLS regressions.
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Interpreting coeff. of multivariate regs. An example.

6 units (n = 6). 3 variables: Y;, D;, and X;. D;, and X;: binary.

ot | v | DX

o U A W N
N O B B W U
© O r O R B
©O O O R P, B

If you regress Y; on constant and D;, what will be coeff. of D;?
If you regress Y; on a constant, D;, and X;, what will be coeff.
of D;? Hint: to answer first question, you can use a result you
saw during sessions. To answer second question, write system
of 3 equations and three unknowns solved by (7,1, 7>2), the
coefficients of constant, D;, and X;, plug-in the values of Y},
D;, and X; in table, and then solve system.
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ot | % | D X

Ui D W N B
O r A W U
O O r O P B
©O O KB L B,

6 2 0

If you regress Y; on constant and D;, what will be coeff. of D;? If you
regress Y; on a constant, D;, and X;, what will be coeff. of D;?

a) Inreg. of Y; on constant and D;, coeff. of D; is 2. Inreg. of ¥; on
a constant, D;, and X;, coeff. of D; is 0.5.

b) Inreg. of Y; on constant and D;, coeff. of D; is 1. Inreg. of ¥; on
a constant, D;, and X;, coeff. of D; is 0.5.

c) Inreg. of Y; on constant and D;, coeff. of D; is 1. Inreg. of Y; on
a constant, D;, and X;, coeff. of D; is O.

d) Inreg. of Y; on constant and D;, coeff. of D; is 1. Inreg. of Y; on
a constant, D;, and X;, coeff. of D; is -0.5.
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In regression of Y; on constant + D;, coeff of D; is 1.
In regression of Y; on constant, D;, + X;, coeff of D; is O.

* Coeff of Dj in reg. of Y; on constant, D;. Result of sessions:
(Average Y; for D; = 1)- (Average Y; for D; = 0)=
1/3(5+3+1)-1/3(4+2+0) = 1.

* Coeff Dj in reg. of Y; on constant, D;, X;: 3 eqgs. with 3 unknowns.
* n=6and] = 2, sowe have (we can forget the -2):

i=1(Yi = (o + 71D +72X)) =0
i=1 Di(Yi — (Po + 71D; +72X)) =0

1 Xi(Yi — Do + 71D + 72X)) =0
* Plugging values of Y;, D;, and X;, yields:
15—-679 =371 =372 =0
9—-3V0 =371 —2y.=0
12 =399 =27, =372 =0
e Subtractingeq2toeq3:34+9,—9, =0
* Multiplying eq 3 by 2 and subtractingeq1:9 —y; — 3y, =0
* Adding the two preceding equations: 12 — 4y, = 0, so ¥, = 3.
* Pluggingy, =3in3+9;—%,=0:y, =0.



A general formula for coefficient of binary variable in a

regression of Y; on constant and 2 binary variables.
* Let D; and X; be 2 binary variables.

* TNgyo: humber of units with D; = 0, X; = 0. nqy: number of
units with D; = 1, X; = 0. ngq: number of units with D; = 0,
X; = 1.nyq1: number of units with D; =1, X; = 1.

* Coeff of D; in regression of Y; on constant, D;, X; is:

1 1 1 1
wl— Y %-— > g|+a-w > ov-— >
Nio Noo n11lD Npq

i:D;j=1, X;=0 i:D;=0, X;=0 =1, X;=1 i:D;=0, X;=1

w: number included between 0 and 1, no need to know formula.

1 .
. n_leDl 1 xi=0 Vi _n_ZlDl 0, x;=0 Yi: difference between

average Y; of units with D = 1 and of units with D; = 0,
among unlts with X; = 0.

1

1 .
. n_ZlDl 1 x=1 Y _n_ZlDl 0, x;=1 Y;: difference between

average Y; of units with D = 1 and of units with D; = 0,
among unlts with X; = 1.

* Coeff of D; measures difference between average of Y; across
subgroups whose D; differs by one, but that have same X;!



Applying formula in example.

* Sample with 6 units. 3 variables: Y;, D;, X;. D; X;: binary
variables.

ot | % | D X

1 5 1 1
2 3 1 1
3 4 0 1
4 1 1 0
5 0 0 0
6 2 0 0
. 1 1

10 00

1
_ZlDl 0, Xi= Yi?

Nopq

1
Ofn_ZlDl 1, X;=1Yi ~
11



iClicker time

unit | % | D | X

1 5 1 1
2 3 1 1
3 4 0 1
4 1 1 0
5 0 0 0
6 2 0 0
a) —Y. Y, — =3 V=1
1o ZED=1, X;=0 Tiag Z1:D;=0, X;=0 Ti
1 1
— Y, — — v, =—1
nlllel 1, X;=1 n01ZlDl 0, X;=1
1
b)n—lozlul 1, x;=0 Yi = 5 —Li:p;=0, x;=0 ¥i=0
1 1
— Y, —— 1Y =0
nlllel 1, X;=1 n01zl D=0, X;=
1 1
C)n_mZle 1, X;=0 Yi _n_OOZlDl 0, x;=0 Yi=-1

1 1
R I A Y =1
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1

n_Zi-D-=1 x;=0Yi = — Xi:p;=0, x;=0 Vi
10

Noo
1

_ZLD =0, X;= 1Y

— Y; —
nlzLD =1, X;=1 o

O,
=0

1 5 1
2 3 1
3 4 0
4 1 1
5 0 0
6 2 0
1
o — Y —
N1o Zl :D;=1, X;=0 Moo
1 1
o — Y —_
Nnqq Zl :D;=1, X;=1 No1 Zl :D;=0, X;=

o O O B =B =

1 1

(5+3) 4=0

* The coeff of D; in regression of Y; on constant, D;, X;isa
weighted average of these two numbers, so that’s why it’s

equal to 0, as we have shown earlier.
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Interpreting coefficients in multivariate regressions.

Previous slides: in reg. of Y; on constant, D;, and X;,
where D; and X; binary, coeff of D; = difference between
average of Y; across groups whose D; differs by one, but
that have same X;.

Extends to all multivariate regressions.

In @ multivariate regression of Y; on constant, D;, X4;, ...,
Xji, Y1, the coeff. of D;, measures difference between
average of Y; across subgroups whose D; differs by one,
but that have same Xj;,..., Xj;.

If ¥; = —0.3, that means that if you compare average Y;
across units whose D; differs by one but that have the
same value of Xy;,..., X;;, the average of Y; is —0.3
smaller among units whose D; is 1 unit larger.

In a multivariate regression of In(Y;) on constant, D;,
X1y Xji, it 1 = —0.3, that means that if you compare
average Y; across units whose D; differs by one but that
have the same value of Xy;,..., X;;, the average of ¥} is
30% smaller among units whose D; is 1 unit larger.



Women earn less than males

 Same representative sample of 14086 US wage earners as in
Homework 3.

* Regression of In(weekly wage) on constant and binary variable

equal to 1 for females in Stata.
. reg In_weekly wage female, r

Linear regression Number of obs = 14,086
F(1, 14084) = 516.54

Prob > F = 0.0000

R-squared = 0.0354

Root MSE = .84461

Robust

In_weekly ~e Coef. Std. Err. t P>|t] [95% Conf. Interval]
female -.3235403 .0142357 -22.73 0.000 -.3514442  -_.2956365
_cons 6.642133 .0099315 668.80 0.000 6.622666 6.6616

* Women earn 32% less than males, difference very significant.

* From that regression, can we conclude that women are
discriminated against in the labor market? Why? 66
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* Women earn 32% less than males, difference very significant.

 Can we conclude that women are discriminated against in the
labor market? Why?

a) Yes, we can conclude that women are discriminated against in
the labor market, this 32% difference in wages must reflect
discrimination.

b) No, we cannot conclude that women are discriminated against
in the labor market, because the R2 of the regression is too low.

c) No, we cannot conclude that women are discriminated against
in the labor market. Maybe women earn less than men for
reasons that have nothing to do with their gender.



Maybe women earn less for reasons that have
nothing to do with their gender.

Women earn less than men.

But that difference could for instance come from the fact they
work less hours per week outside of the home.

Maybe women not discriminated by their employer, maybe
just work fewer hours for their employer => get paid less.

(Aside: women indeed tend to work fewer hours a week
outside of the home than men, but that may be because they
also tend to spend more time taking care of children in
households with children, another form of gender imbalance,
though that imbalance is taking place in the family, not in the
labor market).



A more complicated regression

* Regression of In(weekly wage) on constant, variable for

females + years of schooling, age, hours worked per week.
. reg In_weekly wage female age hours worked years schooling, r

Linear regression Number of obs = 14,086

F(4, 14081) = 1449 .64

Prob > F = 0.0000

R-squared = 0.3883

Root MSE = 67267

Robust

In_weekly wage Coef. Std. Err. t P>|t] [95% Conf. Interval]
female -.2731097 .0117557 -23.23 0.000 -.2961524 -.250067
age -0104635 -0004288 24.40 0.000 -0096231 -011304
hours_worked -0231192 -0005812 39.78 0.000 -02198 .0242583
years_schooling .1024575 -002269 45.15 0.000 -0980099 -1069052
_cons 3.931402 .0398147 98.74 0.000 3.85336 4.009444

* Interpret coeff. of female variable in that regression.
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* Interpret coeff. of female variable reg. on previous slide.
a) On average, women earn 0.27 dollars less than men per week.

b) When we compare women and men that have the same
number of years of schooling, the same age, and that work the
same number of hours per week, we find that on average,
women earn 0.27 dollars less than men per week.

c) When we compare women and men that have the same
number of years of schooling, the same age, and that work the
same number of hours per week, we find that on average
women earn 27% less than men per week.



Answer c) !

Remember: in multivariate reg. of In(Y;) on constant,
D;, X1;)-.., X;i, if Y3 = —0.27, means that if you
compare average Y; across units whose D; differs by
one but that have the same value of Xy,..., X};, the
average of Y; is 27% smaller among units whose D; is
1 unit larger.

Here: D; is female variable. Females have D; = 1,
males have D; = 0.

The other variables in the regression are years of
schooling, age, and number of hours worked / week.

=>Y¥; = —0.27 means that when we compare
women and men that have the same number of
years of schooling, the same age, and that work the
same number of hours per week, we find that on
average women earn 27% less than men per week.



Complicated reg. is stronger, though still imperfect
evidence that gender discrimination on labor market.

e Difference between men and women’s earnings cannot be
explained by differences in education, hours worked per week, and
professional experience.

 Even when we compare men and women with same education,
hours worked per week, and professional experience, women earn
substantially less (27%).

e This is still not definitive evidence of discrimination. Maybe women
tend to go into lower paying jobs and industries than men.

 E.g.:less women in finance and engineering.

e Butis this because women do not like that type of jobs (if so, no
discrimination) or is it because those industries do not want to hire
women (if so, discrimination), or because women would like to go
into those jobs but do not do so because frowned upon due to
social norms (if so, discrimination)?

* Overall, even though there are limits even with the complicated
regression, the fact that women earn less even when we compare
men and women with same education, hours worked per week, and
professional experience, suggests that women discriminated on
labor market.



What is econometrics?

Econometrics is a set of statistical techniques that we can use to
study economic questions empirically.

The tools we use in econometrics are statistical techniques, which is
why the beginning of an intro to econometrics class looks more like
a stats class than an econ class: before we can apply the statistical
tools to study economics question, we need to master the tools!

Why do we want to study economic questions empirically? Isn’t
economic theory enough?

The issue with economic theory is that on a number of issues,
different theories lead to different conclusions.

E.g.: neo-classical economist will tell you that increasing minimum
wage will reduce employment, while a neo-Keynesian will tell you
that increasing minimum wage will increase employment.

Conflicting theories => we need to study these questions
empirically (with data) to say which theory is true.

The wage regressions in homework 3 and in these slides are a first
example of how to use statistical tools to study an economic
qguestion: “are women discriminated on the labor market?”
empirically (with data).

Other examples coming in the next slides.



What you need to remember

* Ina multivariate regression of ¥; on constant, D;, Xy;,..., X};,
Y1, if ¥1, the coeff of D;, is equal to x, means that if you
compare average Y; across units whose D; differs by one but
that have the same value of Xy;,..., X;;, the average of Y; is x
larger (if x > 0) / smaller (if x < 0) among units whose D; is 1
unit larger.

* In a multivariate regression of In(Y;) on constant, D;, X;,...,
X, it Y1, the coeff of D;, is equal to x, means that if you
compare average Y; across units whose D; differs by one but
that have the same value of Xy;,..., X;;, the average of Y; is x%
larger (if x > 0) / smaller (if x < 0) among units whose D; is 1
unit larger.



