Ordinary least squares regression Il:
The univariate affine regression.

Clement de Chaisemartin, UCSB



Many people need to make
predictions

* Traders: use today’s GDP growth to predict
tomorrow oil’s price.

e Banks: use FICO score to predict the amount
that a April 2018 applicant will fail to
reimburse on her one-year loan in April 2018.

e Gmail: use whether incoming email has the
word “free” in it to predict whether it’s a
spam.



The relationship between FICO score
and default

e Assume that relationship between FICO score and amount
people fail to repay looks like graph below: people with low
FICO fail to repay more.

e |f you use a univariate linear regression to predict the amount
people fail to repay based on their FICO score, will you make
good predictions? Discuss this question with your neighbor.
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iClicker time

e |f you use a univariate linear regression to
predict the amount people fail to repay based
on their FICO score, will you make good
predictions?

a) Yes
b) No




N
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In this example, OLS regression function is 250*FICO,
increasing with FICO! We predict that people with better
scores will fail to reimburse more.

OLS regression makes large prediction errors.
Why does regression make large prediction errors?
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iClicker time

 Why does the univariate linear regression
make large prediction errors?

a) Because the relationship between FICO and
the amount people fail to repay is
decreasing.

b) Because the amount that people with FICO
score equal to O fail to repay is different from
0.



Because the amount that people with a FICO

score equal to O fail to repay is different from O.

* The univariate linear regression function is axy,.
Therefore, by construction, our prediction will be 0
for people with FICO score = 0.

e However, as you can see from the graph, people with
a FICO score equal to O fail to reimburse a strictly
positive amount on their loan, not a 0 amount.



You should use an affine prediction function.

 The graph below shows that the function 5000-500*FICO does
a much better job at predicting the amount that people fail to
repay than the univariate linear regression function 250*FICO

e 5000-500*FICO is a an affine function of FICO, with an
intercept equal to 5000, and a slope equal to -500.

* Inthese lectures, we study OLS univariate affine regression.
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Roadmap

1. The OLS univariate affine regression function.

2. Estimating the OLS univariate affine regression function.
3. Interpreting ﬁl

4. OLS univariate affine regression in practice.



Set up and notation.

e We consider a population of N units.

— N = number of people who apply for a one year-loan with
bank A during April 2018.

— N = number of emails reaching Gmail accounts in April 2018.

e Each unit k has a variable y;, attached to it that we do not
observe. We call this variable the dependent variable.

— In loan example, y; is a variable equal to the amount of her
loan applicant k will fail to reimburse when her loan expires
in April 2018.

— In email example, y, =1 if email k is a spam and 0 otherwise.

e Each unit k also has 1 variable x; attached to it that we do
observe. We call this variable the independent variable.

— In loan example, x; could be the FICO score of applicant k.

— In email example, x;, =1 if the word “free” appears in the
email.

_ 1 _ 1
¢ y= Nzlzgzﬂ’k and x = Nzlg:lxk: average of y,s and xs.



Your prediction should be a function of x;,

Based on the value of x;, of each unit, we want to
predict her y,.

E.g.: in the loan example, we want to predict the
amount that unit k will fail to repay on her loan based
on her FICO score.

Assume that applicant 1 has a very high (good) credit
score, while applicant 2 has a very low (bad) credit
score.

Should you predict the same value of y;, for applicants
1and 2?

No! Your prediction should a function of xy, f(x).

In these lectures, we focus on predictions which are a
affine function of x;: f(x;) = by + b1x}, for two
real numbers by and b;.



Our prediction erroris y;, — (by + byxy).

e Based on the value of x;, of each unit, we want to predict her

Yk

e Qur prediction should a function of xj, f (x;). We focus on
predictions which are a affine function of x;: f (xy) = by +
byx;, for two real numbers by and b;.

vy, — (by + byxy), the difference between our prediction and
Vi, IS our prediction error.

* Intheloan example, if y;, — (by + byx},) is large and positive,
our prediction is much below the amount applicant k will fail
to reimburse.

o Ify, — (by+ byxy) is large and negative, our prediction is
much above the amount person k will fail to reimburse.

e Large positive or negative values of y;, — (by + b;x;) mean
bad prediction.

vy, — (by + byx;) close to 0 means good prediction.

12



We want to find the value of (bg, b1) that minimizes

Ilg=1(}’k — (bo + b1xk))2

o YR_1(vi — (by + blxk))2 is positive. =>
minimizing it = same thing as making it as close
to 0 as possible.

o If Z’,le(yk — (by + blxk))2 is as close to 0 as
possible, means that the sum of the squared
value of our prediction errors is as small as
possible.

e =>we make small errors. That’s good, that’s
what we want!



The OLS univariate affine regression function
in the population.

e |et

N
. 2
(Bo, B1) = argminp, p,)er? Z()’k — (bo + blxk))
k=1

e We call 5y + f1x} the ordinary least squares (OLS)
univariate OLS affine regression function of y, on x;,
in the population.

e Affine: because the regression function is an affine
function of x,.

e Shortcut: OLS regression of y;, on a constant and x;,
in the population.

e Constant: because there is the constant 5, in our
prediction function.



Decomposing y;, between predicted value

and error.

e [, and f;: coefficient of the constant and xj, in the OLS
regression of y, on a constant and xj, in the
population.

e Lety, = Py + L1xk. Vi is the predicted value for y;,
according to the OLS regression of y, on a constant
and x; in the population.

e lete, = yi — Vk. €: error we make when we use OLS
regression in the population to predict yy,.

e We have y;, = V. + €.
Vv =predicted value + error.



Bo =y — B1X...

* (Bo,B1): (bg, b1) minimizing Zk 1(3’k (by + b1xk))2-
e Derivative wrt to by is: Yn—1 —2(yx — (bo + byxx)). Why?
e Derivative wrt to b, is: 211¥=1 —2Xy, (yk — (by + blxk)). Why?
* (By,B1): value of(by, by) for which 2 derivatives = 0.
e We use fact 1%t derivative = 0 to write 5, as function of [;:

r=1—2(yk — (Bo + P1xx)) = 0
iif —2Xk=1(yk — Bo — Brxx) =0
iif ZII¥=1(yk —Bo — Bixx) =0
iif 212[:1 Yk — 2%:1 Bo — ZIIX=1 B1x, =0
iif 211¥=1 Yk — leg=1 ,81xk = Zk 1 Bo
iifZﬁ:U’k — b1 k 1% = Nfy
iif %21121:1 Vi — B1 52112[:1 Xk = Po
iifBo =y — B1x.



2 useful formulas for the next derivation.

e During the sessions, you have proven that

1 _ 1 _
NZIIX=1 Xt — X% = N II¥=1(xk_X)2-
e Multiplying both sides by N, equivalent to saying that
k=1Xk” — NX% = Y31 (0 —%)°.
e Bear this 15t equality in mind, we use it in next derivation.
* Moreover,
1]¥=1f(yk _3_,) =f211¥=1(yk _3_,) =f211:’,,=1yk _lelgzl)—/
= xXNy-xNy = 0.
e Therefore,

N N
Y @D =) = Y [ — ) — 1 = )
k=1N Nk=1 N
= Z X (Ve = ¥) — 2 Xy —¥) = Z X (Ve = ¥)
k=1 k=1 k=1

e Bear this 2"9 equality in mind, we use it in next derivation.



‘and B, = Ype1(X=2) (V=)

Zk=1(xk_x)2
Now, let’s use fact 2"d derivative = 0 and formula for 8, to find f;.
Yi=1—2x(yk — (Bo + B1xx)) =0
iif Y=1 %k (Vk — (Bo + P1xx)) = 0
iif Y=1(xYi — Boxx — Pixx®) =0
iif ZII¥=1 XYk — 2112,:1 Boxy — II¥=1 Brx* =0
iika 1 XkYk — Bo Zk 1xk — b1 11¥=1 x® =0
iif Yie=1 XYk = Bo Xk=1Xk + B1 D=1 Xx>
iif Yie=1 XV = (7 — ,81x) Yh=1Xk + B1 Xi=1 Xi*
iif Y=t XkVk = ¥ L=t Xk — B1X D=1 Xk + 1 D=1 Xi”
iif 212’:1 XYk — leg=1 Xy = .31(leg=1 Xp” — lelg=1 xk)
iif Y=ty — x¥) = B1(Th=1x1* — TNX)
iif Yi=1 %k — ) = B (TR x> — Nx?)
iif a1 Ok —%) Wk — ) = B1 Zp=1(xx—%)*
ifB, = Yhe1 (Ok—%) Vi~ y).

Z 1(xk x)z




Applying the formulas for fy and f; in an
example.

e Assume for a minute that N = 3: there are
only two units in the population.

e Assumethaty, =2,x;, =0,y, =3,x, =1,
y3 = 7,and x5 = 2.

e Use the previous formulas to compute 5, and
f1 in this example.
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¢ IfN:3,y1:2,X1:O,y2ZBandezl,y3:7
and x5 = 2, then
3

7
a) Bo = >and By =~

3 7

b) fo =7 and f; = —

3 5
c) Bo =Eand,81 =5




3 5
,80=Eand31=5!

e fN=3,y,=2,x,=0,y,=3,x,=1,y; =7,and x5 = 2,
theny =4and x = 1.
e Then,
B, = (X1 =X)Y1 = Y) + (x2=%) (¥, = ¥) + (x3—%) (Y3 — ¥)
L (%1 =%)2 + (X,= %)% + (¥3—%)°
B O0-1D2-4H)+1A-1)B-4)+2-1)(7-4)
- (0 —1)24(1 — 1)2+(2 — 1)2




Two other useful formulas

e Welete, = vy, — (By + B1xi). e): error we make when we
use a univariate affine regression to predict yy.

* In the derivation of the formula of 5, we have shown that
Y1k — Bo — Prxx) =0

e Thisis equivalent to Z’,\Y:l e, = 0, which is itself equivalent to
%Z’,X:l e, = 0: the average of our prediction errors is O.

* In the derivation of the formula of 5, we have also shown
that Y3 _1 Xk Wk — Bo — B1xk) = 0

e This is equivalent to Y ¥_, x;e, = 0, which is itself equivalent
to saying %Z’,X:l xier = 0:the average of the product of our
prediction errors and x;, is 0.



What you need to remember

Population of N units. Each unit k has 2 variables attached to it:
Vi is a variable we do not observe, x;, is a variable we observe.

We want to predict the y; of each unit based on her xy,.
Our prediction should be function of x;, f (x).
Focus on affine functions: by + b, Xy, for 2 numbers by and b;.

Best (by, by) is that minimizing Z’,le(yk — (bg + blxk))z.

We call that value (B, £1), we call By + B1x): OLS regression
function of y,, on a constant and x;, and we let ¢, = y;, —

(Bo + B1xi).

_ = o= _ IR G D) =)
,BO - y le' and 181 - Zﬁ:l(xk—f)z :

1 _— .
We have NZ’,Ll e, = 0: average prediction erroris 0, and

1 onN _
NZR:l Xk€r = 0.




Roadmap

1. The OLS univariate affine regression function.

2. Estimating the OLS univariate affine regression function.
3. Interpreting ,5’1.

4. OLS univariate affine regression in practice.
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Can we compute (5y,01)?

e QOur prediction for y;, based on a univariate
linear regression is 5y + [1Xy, the univariate
linear regression function.

e =>t0 be able to make a prediction for a unit’s
Vi based on her x;, we need to know the

value of (B, b1).

 Under the assumptions we have made so far,
can we compute(f,, f1)? Discuss this
guestion with your neighbor during 1 minute.
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e Can we compute (f,, £1)?
a) Yes
b) No



No!

N _ _

* fo =Yy — B1Xx,and 5, = Zkzzlllz(,j(x?_(gz Y)

e Remember, we have assumed that we observe
the x; s of everybody in the population (e.g.
applicants’ FICO scores) but not the y,s (e.g.
the amount that a person applying for a one-
vear loan in April 2018 will fail to reimburse in
April 2018 when that loan expires).

e => we cannot compute ,Bo, and ,31-




A method to estimate 5, and [,

We draw n units from the population, and we measure the
dependent and the independent variable of those units.

For every i between 1 and n, Y; and X; = value of dependent
and of independent variable of ith unit we randomly select.

We want to use the Y;s and the X;s to estimate [, and [5;.

C e .. 2
(Bo, B1), (bg, b1) minimizing Zﬁ’ﬂ()’k — (bo + blxk)) -
=> to estimate (By, 1), we use (b, b;) minimizing Z’lf‘:l(Yi —
2
(bo + b1X;))".
Instead of finding (b, b;) that minimizes sum of squared

prediction errors in population, find (b, b;) that minimizes
sum of squared prediction errors in the sample.

Intuition: if we find a method to predict well the dependent
variable in the sample, method should work well in entire
population, given that sample representative of population.



The OLS regression function in the sample.

e |et

n
(30»31) = argming, p.yer? Z(Yl — (bp + b1Xi))2
i=1

e We call ,30 + (3, X; the OLS regression function of Y; on a
constant and X; in the sample.

* Inthe sample: because we only use the Y;s and X;s of the n
units in the sample we randomly draw from the population.

. (BO, Bl): coefficients of the constant and X; in the OLS
regression of Y; on X; in the sample.

e LetY; = B, + B,X;. Y, is the predicted value for Y;
according to the OLS regression of Y; on a constant and X;
in the sample.

e Leté; = Y; — Y. é;: error we make when we use OLS
regression in the sample to predict ;.

e WehaveY; =Y, +¢;.



Find the value of (b,, b;) that minimizes
2
7iﬂL=1(Yi — (bg + b1Xi)) :

* Find a formula for the value of (b, b;) that

2
minimizes Z?zl(Yi — (by + lel-)) . Hint: the
formula is “almost” the same as that for (S, £1),
except that you need to replace:

— N, size of population by n, size of sample,

— v, the dependent variable of unit k in the
population, by Y;, the dependent variable of unit i

in the sample,

— X, the independent variable of unit k in the
population, by X;, the independent variable of
unit i in the sample.
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iClicker time

+ letV =- = YuandX—— X Let

n n

(,BO, ,81) denote the value of (bo,bl) that minimizes
?:1(Yi — (bg + b1Xl-))2. We have:

a) By =¥ — 1%, and B, = =1 (e =%) (V= y)

z:k_1(xk X)%

2 vV _ A ¥ 5 (Xi—X)(Y;-Y)
D) o =7 — 1%, and p; = gp, L0

5 _V_p ¥ 5 L (Xi—X)(Y-7)
C) IBO = lng’ and 'Bl - 5?:1(Xi—)?)2




n _ _

S BT and p — S K= D¥i=D)
=Y —(,X,and f; === —~|

ﬁo ﬁl ’ ﬁl "I:”L:l(Xi_X)Z

e Sketch of the proof.

* Differentiate ).} 1(Y (by + lel-))2 wrt to by and b;.

. ,BO and ,81. values of by and b, that cancel these two
derivatives. That gives us a system of 2 equations with 2
unknowns to solve.

e The steps to solve it are exactly the same as those we used to

find By =y — B1X,and B; = Lies 1<xk x)(ykz 2 , except that we
replace:

— N, the size of the population by n, the size of the sample,

— Vi, the dependent variable of unit k in the population, by
Y;, the dependent variable of unit i in the sample,

— Xy, the independent variable of unit k in the population,
by X;, the independent variable of unit i in the sample.




fo converges towards 5,5, and [5; converges
towards ;.

e Remember, when we studied the OLS regression of Y; on
X; without a constant, we used the law of large numbers

to prove that lim & = «a.
n——4oo

e When the sample we randomly draw gets large, @, the
sample coefficient of the regression, gets close to «, the
population coefficient, so & is a good proxy for «.

* Here, one can also use the law of large numbers to prove
that lim B, = B, and llm [)’1 = [;.

n——+4oo
* Take-away: when sample we randomly draw gets large,
fo and (1, sample coefficients of the regression of ¥; on
a constant and X;, get close to 5y and 1, the population
coefficients.

e Therefore, 5, and 5, = good proxys of B, and 8; when
sample is large enough.



iClicker time

i=1(Xi=X)(Y;=Y)

A ?zl(Xl_X)z

e |s f; areal number, oris it a random variable? Discuss this
guestion with your neighbour for 1Imn, and then answer.

a) f1 a real number

b) f1 a random variable.

e We have shown that ,31 =

34



f1 is a random variable!

=1 (Xi=X) (Yi=1)

Z?=1(Xi—)?)2
X;s and Y;s are random variables: their value depends on which unit
we randomly draw when we draw ith unit in sample.

Therefore, [5; is a random variable, with a variance.

We have shown that ,[?1 =

Let g2 = %Z’,ﬁ’zl(ek)z denote the average of the squared of our
prediction errors in the population.

0_2
Yiz (Xi—X)%
V(,Bl) small if average squared prediction error low, meaning that
regression model makes small prediction errors in the population

V(,Bl) small if high variability of X;.
V(,[?l) small if sample size is large.

One can show that V(B;) =~



Using central limit theorem for f; to construct a
test and a confidence interval.

e Ifn> 100, ﬁl_Aﬁl follows normal distribution with mean 0 and variance 1.
1/V(ﬁl)
e We can use this to test null hypothesis on f3;.

e Often, we want to test f; = 0. If f; = 0, OLS regression function is 85 +
0 X x;, = fy. Means that actually x;, is useless to predict y;. E.g.: best
prediction of amount people will fail to repay on their loan is actually not a
function of their FICO score, it is just a constant.

e |If we want to have 5% chances of wrongly rejecting f; = 0, test is:

Reject B; = 0 if B> 1.96 or 21— < —1.96.

Otherwise, do not reject f; = 0.
e We can also construct confidence interval for f3;:

[ﬁ] — 1.96\/@, By + 1.96\/@].

For 95% of random samples we can draw, ; belongs to confidence interval.




Assessing quality of our predictions: the MSE

For every individual in sample, é; = Yi-(ﬁo + BlXi): error we make
when we use sample OLS regression to predict Y;.

We have Y; = B, + B X; + é;.

ex = Vi—(Bo + B1xy): population prediction errors. é;: sample
prediction errors.

: 1
Slide 25: we have shown that NZ’,X:l er = 0.
. 1 A -
Similarly, - * 1 é; = 0. Average sample prediction error=0.
1 A : . :
We cannot use —);i*_, é; to assess quality of our predictions. Even if
n

: . 1 A
our regression makes bad predictions, - * 1 é; always equal to 0.

1 A 2 :
Instead, we use - * 1 €;”: mean-squared error (MSE) of regression.

Good to compare regressions: if regression A has a lower MSE than
B, A better than B: makes smaller errors on average.

1 A : .
However, - 1 eiz hard to interpret: if equal to 10, what does that
mean? Does not have a natural scale to which we can compare it.



Assessing quality of our predictions: the R?.

1 n A2

° I 2 — —
Instead, we are goingtouse R“ =1 %Z’Ll(Yi—Y)Z
e 1—-MSE /sample variance of the Y;s



The R? has a natural scale (1/3)

e ¢; = Yl--(,30 + BlXi) = error we make when we use sample OLS
regression to predict Y;. We have Y; = fy + 1 X; + é;.
o e =Vi—(Lo + B1xx): population errors. é;: sample errors.

* Slide 25: we have shown that — Z 16 =0and= Z _1Xger = 0.
Average population error =0, and average product of x;s and e,s = 0.

 Similarly, one can show that nZl 16, =0and= Z 1 X;é; = 0. Average
sample error=0, and average product of the X;s s and e s=0.
e Because of this, one can show that

=1 (Y, —Y)? = % i=1 (Bo + PiX; + & — (Bo + PrX + 5))2
1(Bo + BiX; = (Bo + B1X) +é¢; —5)2

= 12 (,30 + ,31X (,30 + ,31X)) D1 &;”.

That’s because — Zl 16, = 0and ;Zileiei = 0 implies

1 (,30 + B1X; — (,30 + 31)?)) (éi — 5) = 0.
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The R? has a natural scale (2/3)

e lLete; = I/i—(ﬁo + ﬁlXi) denote the error we make when we use the
sample OLS regression function to predict Y;. We have Y; = B, +

p1X; + é;.

e One can show that - Zl 16, =0and-= Z 1 X;é; = 0. The average

sample predlctlon error is 0, and the average product of the X;s
and E;s in the sample is 0.

e Because of this, one can show that
A A A A =)\ 2 ) 2
IS (=2 =250 (Bo + BuXi — (Bo + BiX)) +230,(e - 8)".
. —Z " (Y; — Y)? is the sample variance of the Y;s,

(,80 + ,81X (,80 + ,81X)) is sample variance of ,[?0 + ,[§1Xl-s,
and Zl L &;% is the MSE.

. Ihe sample variance of the Y ;s is equal to the sample variance of
Bo + B1X;, our predictions for Y;, plus the MSE of the regression.
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e One can show that

_ n n n a —\2
(= D)2 =25 (Bo + BuXi — (Bo + BiX)) +
lvon A2

—2.i=1€i -
n&=1"1

lyn 5.2
¢ RZ=1-12"—

CIyn w-m?
 Based on the equality above, and based on its definition,
which of the following properties should the number R?
satisfy?
a) R? mustbe included between 0.5 and 1.
b) R? mustbe included between 0.5 and 1.5.

¢) R? mustbe included between 0 and 1.




The R? has a natural scale: it must be included
between 0 and 1 (3/3)

e One has:

1 _ 1 - A .

- Y —Y)r == ?:1 (,30 + [1X; (,30 + ,31X)) Dy 12-
1 «on A 2

e RZ=1—- n”e" soR2<1

S (V=D
e Then, using the fact that

- ?1é12— =Y -3 (,30+,31X (,30 +,31X))

n
one can show that

137 (Bo+BiXi-(Bo+BiX))
_Z? 1(Yl Y)z

e => R?=easily interpretable measure of quality of our predictions. If
close to 1, our predictions make almost no error close to 0), so
excellent prediction. If close to O, poor prediction.

42
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What you need to remember

Prediction for y;. based on OLS regression of y, on a constant and
X i the population is o + 1 X, with fo =y — X, and 5, =
Lk=1Xk—X) VK—Y)

Zﬁ:l(xk_f)z
We can estimate (8, 81) if we measure y;s for random sample.

For every i between 1 and n, Y; and X; = value of dependent and
independent variables of ith unit we randomly select.

(Bo, B1) is (bg, b1) that minimizes Z’,le(yk — (by + blxk))z
To estirznate (Bo, B1), find (bg, by) minimizing X1, (Y; — (by +
b X))

Yields By = ¥ — f,X, and B, =

71'1=1(XL'_)?)(Y1'—Y)
it (Xi—X)?

A 2 n —
V(B1) = i and if n = 100, Bl follows N(0,1). We can

Liza (Xi=X)? V(B1)
use this to test f; = 0 and get 95% confidence interval for [3;.
lyn 52
R2=1-—2""""__ Close to 1: good prediction. Close to 0: poor
. Z?=1(YL—Y)2 4=
n .

prediction.
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Roadmap

1. The OLS univariate affine regression function.

2. Estimating the OLS univariate affine regression function.
3. Interpreting ,[?1

4. OLS univariate affine regression in practice.



A useful reminder: the sample covariance

Assume randomly draw a sample of and n  units from a population, and
for each unit observe variables X; and Y;.

Sample covariance between X; and Y; is %z’i':l(xi—)_()(yi —-Y).
Example: X; = FICO score of ith person, Y;: amount she defaults.

If X; > X (person i’s FICO > average FICO in sample):
— IfY; > Y (amount i defaults > average default in sample) then
X;—X)(Y;—=Y)>0,
— IfY; < Y then (X;—X)(Y; = Y) <O.
If X; < X (person i’s FICO < average FICO in sample):
— IfY; <Y then (X;—X)(Y; —Y) > 0.
— If¥; > Y then (X;=X)(Y; = Y) < 0.
When many people have X; > X and Y; > Y, and many people have X; <
XandY; <Y, then= Z (X =X)(Y; —=Y) > 0.

X;andY; move in the same direction.
When many people have both X > X and Y; < Y, and many people have
bothX; < XandY; >V, then= Z" (X=X (Y; -Y) <.

X;and Y; move in opp05|te directions.



iClicker time

e Let X; = FICO score of ith person, Y;: amount she
defaults.

¢ Let %Z’{‘zl(Xi—)?)(Yi —Y) be their sample
covariance.

 Which of the two statements sounds the most likely
to you?

a) %Z?zl(Xi—)? )(Y; — Y) is strictly positive

b) %Z{;l(Xi—)? )(Y; — Y) is strictly negative



In example, Iiker%Z?zl(Xi—)?)(Yi -Y)<0

e Typically, one would expect that people with a FICO score
below average default more than the average on their

loan.

* Similarly, one would expect that people with a FICO score
above average default less than the average on their loan.

» Therefore, we expect that people with X; < X also have
Y; > Y, and people with X; > X also have Y; <.

 Therefore, it is likely that
1 — —

n
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* Go back to the formula we derived for f;, the coefficient
of X; in the sample regression of Y; on a constant and X;.

 Which of the following statements is correct:

a) [, is equal to the sample covariance between X; and
Y; divided by the sample variance of X;.

b) B, is equal to the sample covariance between Y; and
Y; divided by the sample variance of Y;.

c) By is equal to the sample variance of X; divided by the
sample covariance between X; and Y;.

d) None of the three statements above is correct.



B1 = sample covariance between X; and Y;
divided by sample variance of X;.

g, = YL Xi-X)(Y-T)
L= 31 (x-%)2

Multiply numerator and denominator by %, yields:
1 _ _
— i (Xi—=X)(Y; = Y)
1= 1

?=1(Xi_)?)2

B, = sample covariance between X; and Y; divided by sample
variance of X;.

Therefore, #; > 0 if X; and Y; move in the same direction, 8; <
0 if move in opposite directions.

In the regression of the amount defaulted on a constant and
FICO, do you expect that 8; > 0 or 8, < 0?



For now, we can interpret the sign of ,@1,
not its specific value.

For now, we have seen that ,5’1 > 0 means that X; and Y;
move in the same direction, 5; < 0 means that move in
opposite directions.

Interesting, but does not tell us how we should interpret
a specific value of (5.

For instance, what does 3; = 3 mean?
That’s what we are going to see now.



Interpreting ,631 when X; is binary.

e Assume you run an OLS regression of Y; on a constant and X,
where X; is a binary variable (variable either equal to 0 or to 1).

e Example: you regress Y;, whether email i is a spam on a constant
and X;, a binary variable equal to 1 if the email has the word
“free” init, and to O if the email does not contain that word.

* Then, you have shown / will show during sessions that
1

b1 = %Zi:xiﬂ Y; — n_ozizxizo Y;,
where 1, is the number of units that have X; = 1, ng is the number
of units that have X; = 0, .;.x.=1 ¥; is the sum of ¥; of all units with
X; =1,and 2,;.x.=¢ Y; is the sum of ¥; of all units with X; = 0.

L 1
* Inthe spam example, explain with words what n_zi:Xl:l Y;
1

1 A . . . .
n_zi:Xi:O Y;, and [; respectively represent. Discuss this question
with your neighbour for one minute.

51



iClicker time

Assume you regress Y;, whether email i is a spam on a constant and X;,
a binary variable equal to 1 if the email has the word “free” in it, and
to 0 if the email does not contain that word. You know that

A 1 1

b1 = n_12izxi=1 Y — n_OZi:XFo Y;.
 Which of the following statements is correct?

1 . .
a) n_lzi: x;=1Y; is the percentage of emails that have the word free

: 1 :
among the emails that are spames, n—Zi: x;=0 Y; is the percentage

of emails that have the word free among the emails that are not
spams, so [; is the difference between the percentage of emails
that have the word free across spams and non spams.

1 . .
n—Zi: x;=1Y; is the percentage of emails that are spams among
1

. 1 .
the emails that have the word free, n—Zi: x;=0 Y; is the
0

percentage of emails that are spams among the emails that do
not have the word free, so f5; is the difference between the
percentage of emails that are spams across emails that have
and do not have the word free.

b)



B, = difference between % of spams
across emails with/without word free.

°« ) X ;= 1 Y; counts the number of spams among emails that have the
word free

* 14 isthe number of emails that have the word free.

1
e Therefore, Zl .x;=1 Yi* percentage of spams among emails that

have the word free.

1 .
. S|m|IarIy, Zl X;=0 o Yi: percentage of spams among emails that do

not have the word free.

. ,81 = difference between % of spams across emails with/without
word free.

e Qutside of this example, we have following, very important result:

When you regress Y; on a constant and X;, where X; is a binary
variable, 84 is the difference between the average value of Y; among
units with X; = 1 and among units with X; = 0.



Testing whether the average of a variable is
significantly different between 2 groups.

When you regress Y; on a constant and X;, where X; is a binary
variable, [ is the difference between the average value of Y; among
units with X; = 1 and among units with X; = 0 in the sample.

Similarly, p; is difference between the average Y; among units with
X; = 1 and among units with X; = 0 in the full population.

Remember that if BlA > 1.96 or BlA < —1.96, we can reject at
1/V(Bl) «/V(ﬁl)
the 5% level the null hypothesis that 5; = 0.

When we reject f; = 0 in a regression of Y; on a constant and X,
where X; is a binary variable, we reject the null hypothesis that the
average of Y; is the same among units with X; = 1 and among units
with X; = 0 in the full population.

The difference between the average of Y; between the two groups in
our sample is unlikely to be due to chance.

Groups have a significantly different average of Y; at the 5% level.



What about £,?

Assume you run an OLS regression of Y; on a constant and X;,
where X; is a binary variable (variable either equal to 0 or to 1).

Then, you have shown / will show during sessions that

A 1
Bo = n_ozi:Xl:O Y.
,[?0: average of Y; among units with X; = 0.

f1 is the difference between the average value of Y; among
units with X; = 1 and among units with X; = 0.

People sometimes call units with X; = 0 the reference

category, because 3; compares the average value of Y; among
units that do not belong to that reference category to units in
that reference category.

In the spam example, By: percentage of spams among emails
that do not have the word free in them, (3;= difference
between percentage of spams across emails that have the word
free in them and emails that do not have that word.



To predict Y of a unit, OLS uses average Y;

among units with same X; as that unit

Now, let’s consider some units j outside of our sample.
We do not observe their Y; but we observe their X;.

A A

J
Predlcted value of ¥; according to OLS regression: 17] Bo + B1X;

1 1
:80 — ZLX —0 Yi/ and :81 - 1Zi:Xl:lYi o _Zi:Xi=0 Y.

No

So Y, = sz _o ¥; for units j such that X; = 0.

O 1
And Y] _ZLXL Y'+_ZL:Xi=1 L Zle Y’ _n_lzi;xizlyi

for units j such that Xj =

To make prediction for unit W|th X; = 0, we use average ¥; among
units with X; = 0 in sample.

To make predlct|on for a unit with X; = 1, we use average ¥; among
units with X; = 1 in sample.

Prediction = average Y; among units with same X; in sample.

In sessions: in regression of Y; on a constant, OLS prediction =
average Y; among units in sample.

no



For now, we know how to interpret the
value of 51, but only when X; binary.

When X; binary,

A_lzy 1ZY
lgl_nl an L

1:X;=1 1:X;=0
In that special case, #; has a very simple interpretation:

difference between average Y; among units with X; = 1 and
among units with X; = 0.

In other words, 8; measures by the difference between the
average of Y; across subgroups whose X; differs by one (units
with X; = 1 versus units with X; = 0).

Does this result extend to the case where X; not binary?



B, measures difference between the average of
Y; across subgroups whose X; differs by one

e When X; binary, 8; measures diff. between average of Y; across
subgroups whose X; differs by one (units with X; = 1 versus X; = 0).

 Now, assume that X; can be equalto 0, 1, or 2.

* ny: number of units with X; = 0. ny: number of units with X; = 1. n,:
number of units with X; = 2.

3, = ! Y12Y+(1)12Y12Y
,Bl_Wnl an l an lnl L |

1:X;=1 1:X;=0 1:X;=2 :X;=1
where w is number included between 0 & 1 that you don’t need to know.

e [3;: weighted average of diff. between average Y; of units with X; = 1
and X; = 0, and of diff. between average Y; of units with X; = 2 and
Xi = 1.

e Units with X; = 1 and X; = 0 have a value of X; that differs by one.
e Units with X; = 2 and X; = 1 have a value of X; that differs by one.

« =>[3, measures the difference between the average of Y; across

subgroups whose X; differs by one! s



B, measures difference between the average of
Y; across subgroups whose X; differs by one

* When X; binary, Bl measures diff. between average of Y; across subgroups
whose X; differs by one (units with X; = 1 versus X; = 0).

* Now, assume that X; can be equal to O, 1, 2,...,K.

* nNng: number of units with X; = 0, ny: number of units with X; = 1,..., ng:
number of units with X; = K.

K
B=D el X Vo D
= W —_— . — . ,
' = “\ AT l
=1 1:Xi=k 1:X;i=k—-1
where wy,: positive weights summing to 1 that you do not need to know.

« [3,: weighted average of diff. between average Y; of units with X; = 1 and
X; = 0, of diff. between average Y; of units with X; = 2and X; = 1,..., of
diff. between average Y; of units with X; = K and X; = K — 1.

e Units with X; = 1 and X; = 0 have a value of X; that differs by one.
e Units with X; = K and X; = K — 1 have a value of X; that differs by one.
e [3, = diff. between average of Y; across subgroups whose X; differs by 1!
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Logs versus levels

Assume you regress Y; on constant and X;, £; = 0.5: when you
compare people whose X; differs by 1, average Y; 0.5 larger among
people whose X; is 1 unit larger.

Assume you regress In(Y;) on constant and X;, £; = 0.5: when you
compare people whose X; differs by 1, average In(Y;) 0.5 larger among
people whose X; 1 unit larger.

Due to properties In function, if people whose X; is 1 unit larger have
an average In(Y;) 0.5 larger, average of Y; 50% larger among those
people.

Assume you regress In(Y;) on constant and In(X;), 8; = 0.5: when you
compare people whose X; differs by 1%, average Y; 0.5% larger among
people whose X; 1% larger.

Regressing Y; on constant and X; is useful to study how the mean of Y;
differs in levels across units whose X; differs by one.

Regressing In(Y;) on constant and X; is useful to study how the mean
of Y; differs in relative terms across units whose X; differs by one.

Regressing In(Y;) on constant and In(X;) is useful to study how the
mean of Y; differs in relative terms across units whose X; differs by 1%.



iClicker time

b)

Assume you observe the wages of a sample of wage earners
in the US. You regress Y;, the monthly wage of person i, on a
constant and Xj;, a binary variable equal to 1 if i is a female
and to 0 if i is a male. Assume that you find #; = —200 and
B, = 2000

Which of the following statements is correct?

In this sample, the average wage of females is 200 dollars
higher than the average wage of males, and the average
wage of females is 2000 dollars.

In this sample, the average wage of females is 200 dollars
lower than the average wage of males, and the average
wage of males is 2000 dollars.



Average wage of females is 200 dollars
lower than average wage of males.

X; binary: X; = 0 for males, X; = 1 for females.

A 1 1 A
181 — n_lzi:Xl:l Yl o _Zi:Xl:O Yii Therefore, :81 —

n
difference between a\?erage wage of females and males.
1 = —200 means that females make 200 dollars less

than males on average.

o 1 e

Lo = n_zi:XFO Y;, Therefore, B, = average wage of
0

males.

,[?O = 2000 means that males make 2000 dollars on
average.
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b)

Assume you observe the wages of a sample of 5,000 wage
earners in the US. You regress Y;, the monthly wage of person
[, on a constant and X;, a binary variable equalto 1 ifiis a
female and to 0 if i is a male. Assume that Eviews or Stata tells

you that f; = —200 and /V(Bl) = 20. Which of the

following statements is correct?

In this sample, the average wage of females is 200 dollars
lower than the average wage of males, and the difference
between the average wage of the two groups is
statistically significant at the 5% level.

In this sample, the average wage of females is 200 dollars
lower than the average wage of males, and the difference
between the average wage of the two groups is not
statistically significant at the 5% level.



= —10, sowe reject f; = 0 at 5%

V(B1
The difference between the average wage of males and females
is statistically significant at the 5% level.

It is very unlikely (less than 5% chances) that in the US
population males and females have the same average wages,
but that we drew a random sample fairly different from the US

population where males’ average wage is 200 higher than that
of female.

Given that our random sample is quite large (5,000 people), the
fact that in our sample the average wage of males is 200 dollars
> than that of females indicates that in the US population,
males also have a higher average wage than females.
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b)

Assume you observe the wages of a sample of wage earners
in the US. You regress Y;, the monthly wage of person i, on a
constant and Xj;, a binary variable equal to 1 if i is a female
and to 0 if i is a male. Assume that you find #; = —200 and
3, = 2000

Which of the following statements is correct?

To predict the wage of a female not in the sample, this
regression model will use the average wage of females in
the sample.

To predict the wage of a female not in the sample, this
regression model will use the average wage of males and
females in the sample.



To predict wage of a female not in sample,
regression uses average wage of females in sample.

* Now, let’s consider some units j outside of our sample => we
do not observe their Y;.

* Predicted value of Y; according to OLS regression: Y; = [, +
p1X;.
* Given thatj female, X; = 1, so predicted wage: 17] = [y + B1.

5 1 A 1 1
* IBO = n_ozi:Xl:O Yir and 181 — n_12i:Xi=1 Yl _ n_OZi:Xl:O Yi; S0
- 1 1 1 1
Yj — n_ozi:Xi=O Yl + n_lzi:Xi=1 Yl T _Zi:Xi=O Yl — _Zi;Xizl Yl

No nq
 Predicted wage: average wage of females in sample.
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e Assume you observe the wages of a sample of wage
earners in the US. You regress In(Y;), the monthly wage
of person i, on a constant and X;, a binary variable equal
tolifiisafemaleandtoOifiisa male. Assume that

you find B; = —0.1.
e Which of the following statements is correct?

a) In this sample, the average wage of females is 0.1
dollars lower than the average wage of males.

b) In this sample, the average wage of females is 10%
lower than the average wage of males.



Average wage of females is 10% lower than
average wage of males.

X; binary: X; = 0 for males X; = 1 for females.

B = _Zle In(Y;) — Zle o In(Y;), Therefore,
ny

B = difference between average In(wage) of females
and males.

B, = —0.1 means that the average In(wage) of females
0.1 lower than the average In(wage) of males.

As we discussed a few slides ago, using some properties
of the In function, one can show that this implies that
the average wage of females is 10% lower than the
average wage of males.
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Assume you observe the wages of a sample of wage earners
in the US. You regress Y;, the monthly wage of person i, on a
constant and X;, their number of years of professional
experience (from O for people who just started working to 50
for people who have worked for 50 years). Assume that you
find f; = 100.

Which of the following statements is correct?

When we compare people whose years of experience
differ by one, we find that on average, those who have one
more year of experience earn 100 more dollars per
month.

The covariance between years of experience and wage is
equal to 100.

The covariance between years of experience and wage

divided by the variance of years of experience is equal to
100.



Answers a) and c) both correct

e X, can be equal to 0 (no experience), 1, 2,...50.

 Letny be number of units with X; = 0 (no experience),..., let n¢y be
number of units with X; = 50 (50 years of experience).

50

= Yo Y Vi D
,Bl— Wknk klnk—l A

k=1 1:X;= I:X;=k—-1

where w;, are positive weights summing to 1 that you do not need to
know.

e [3,: weighted average of difference between average wage of people
with 1 and O years of experience, of difference between average wage
of people with 2 and 1 years of experience,..., of difference between
average wage of units with 50 and 49 years of experience.

. Al = 100 means that when we compare people whose years of
experience differ by one, we find that on average, those who have one
more year of experience earn 100 more dollars per month.

e Answer c) also correct. However, ratio of covariance and variance hard
to interpret, while average difference of wages of people with one year
of difference in their experience easy to interpret.
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b)

Assume you observe the wages of a sample of wage earners
in the US. You regress In(Y;), the In(monthly wage) of person
[, on a constant and In(X;), the In(number of years of
professional experience) of that person. Assume that you find
B, = 0.5.

Which of the following statements is correct?

When we compare people whose years of experience
differ by one, we find that on average, those who have one
more year of experience earn 50% more.

When we compare people whose years of experience
differ by 1%, we find that on average, those who have 1%
more years of experience earn 0.5% more.



Answer b) correct

* We regress In(Y;), the In(monthly wage) of person
i, on a constant and In(X;), the In(number of years
of professional experience) of that person.

e Because In(X;) and not X; in regression, 3; does
not compare subgroups whose experience differ by

1 one year, but subgroups whose experience differ
by 1%

* In this sample, when we compare subgroups of
people whose years of experience differ by 1%, we
find that on average, those who have 1% more
years of experience earn 0.5% more.



What you need to remember

A

f1 = sample covariance between X; and Y; / by sample
variance of X;.

B, > 0 (resp. f; < 0): covariance between X; and ¥; > 0
(resp. < 0): X; and Y; positively correlated, move in same
(resp. opposite) direction.

. 5 1
When X; binary, B1 = —X;.x,=1Yi — — Xi:x;=0 Vi

n, n
difference between thelaverage of Y; a?nong subgroups

whose X; differs by one (units with X; = 1 versus units
with Xi — 0)

When X; not binary, 3 still measures difference between
average of Y; among subgroups whose X; differs by one.

You need to know how to interpret 5, in a regression of
Y; on a constant and X;, in a regression of In(Y;) on a
constant and X;, and in a regression of In(Y;) on a
constant and In(X;).

1



Roadmap

1. The OLS univariate affine regression function.

2. Estimating the OLS univariate affine regression function.
3. Interpreting ﬁl

4. OLS univariate affine regression in practice.
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How Gmail uses OLS univariate affine regression

e Gmail wants to predict y,: 1 if email k is spam, 0 otherwise.
e Todoso, use xi: 1if “free” appears in email, 0 otherwise.

* X easy to measure (a computer can do it automatically, by
searching for “free” in the email), but y;, is hard to measure:
only a human can know whether an email is a spam or not. =>
cannot observe vy, for all emails.

 To make good predictions, would like to compute,(ﬁo,zgl),
value of (by, b;) minimizing Zl,l'zl(yk — (by + blxk)) , and
then use By + [1x; to predict y. By + [1x: affine function
of x;, for which sum of squared prediction errors(yk —

(by + blxk))z minimized.

. PP _ TR R @) _
Issue: By =y — [1X,and f; = SN )2 > they

cannot compute these numbers because do not observe yy,.




How Gmail uses OLS univariate affine regression

Instead Gmail draws random sample of, say, 5000 emails, ask
humans to read them and determine whether spams or not.

For i between 1 and 5000, Y;: whether ith randomly drawn email is
spam, X;: whether ith randomly drawn email has free in it.

(Bo, B1) is value of (by, b;) minimizing Z’,le(yk — (b + blxk))z

2

Estimate (B, 51): use (bg, by) minimizing X1, (V; — (by + b1 X;))".
ilds B = V — . ¥ and f. = 2= XimDEi=Y)

Yields By =Y — ;X and 3; = Zl?=1(Xi—)?)2 o

For emails not in sample, do not know if spam, but use 8, +£;x; as

their prediction of whether the email is a spam or not.

Because their random sample of emails is large, B, and 3, should
be close to 5y and 51, and therefore 5, +[1x; should be close to
Bo + B1xy, the best univariate affine prediction of y, given xj.

Use R? to assess whether regression makes good predictions.




Application to a data set of 4601 emails

e 4601 emails which have been read by humans. Variable spam =
1 if email = spam, O otherwise.

 We have another variable: number of times the word “free”
appears in the email/number of words in the email *100. Ranges
from 0 to 100: percentage points.

e We go to Eviews and write “Is spam c percent_word_free”.

Dependent Variable: SPAM
Method: Least Squares
Date: 04/26/17 Time: 15:56
Sample: 1 4601

Included observations: 4601

Variable Coefficient  Std. Error t-Statistic Prob.

PERCENT_WORD_FREE 0.201984 0.023411 8.627873 0.0000

C 0.372927 0.007555 49.35958 0.0000
R-squared 0.015928 Mean dependent var 0.394045
Adjusted R-squared 0.015714 S.D. dependent var 0.488698
S.E. of regression 0.484843 Akaike info criterion 1.390450
Sum squared resid 1081.098 Schwarz criterion 1.393247
Log likelihood -3196.730 Hannan-Quinn criter. 1.391434
F-statistic 74.44020 Durbin-Watson stat 0.032029

Prob(F-statistic) 0.000000




Interpretation of 3,

. Bo = 0.37 and ,@1 = 0.20. Interpretation of ,élz

When we compare emails whose percentage of words that are
the word “free” differ by 1, percentage of spams is 20 points
higher among emails whose percentage of the word free is 1

point higher.
 Emails where the word free appears more often are more
likely to be spams!



Using B, and B, to make predictions

e [, =0.37 and 3; = 0.20. Assume you consider two
emails outside of your sample, and therefore you do not
know whether they are spams or not.

* |n one email, the word “free” =0% of the words of the
email, the other one where the word “free”=1% of the
words of the email.

e According to the OLS affine regression function, what is
your prediction for the first email being a spam? What is
your prediction for the second email being a spam?
Discuss this question with your neighbor for 2 minutes.
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b)

B, = 0.37 and B; = 0.20. Assume you consider two emails,
one where the word “free” =0% of the words of the email, the
other one where the word “free”=1% of the words of the
email.

According to the OLS affine regression function, what is your
prediction for the first email being a spam? What is your
prediction for the second email being a spam?

The predicted value for the first email being a spam is
0.37, while the predicted value for the second email being
a spam is 0.372.

The predicted value for the first email being a spam is
0.37, while the predicted value for the second email
being a spam is 0.57.



Predicted value for 15t email being spam is 0.37,
predicted value for 2" email being spam is 0.57.

e (£, =0.37 and ; = 0.20. Assume you consider two
emails, one where the word “free” =0% of the words of
the email, the other one where the word “free”=1% of
the words of the email.

e According to the OLS affine regression function, what is
your prediction for the first email being a spam? What is
your prediction for the second email being a spam?

e According to this regression, predicted value for whether

email is a spam is fy+f1x, where x is number of times
“free” appears in the email/number of words in the
email * 100.

e For first email x = 0=> predicted value = 0.37.
 For second email, x = 1 => predicted value = 0.57.
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Testing 5, = 0.

e 3, =0.20, and \/V(ﬁl) = 0.023.

 Can we reject at the 5% level the null
hypothesis that f; = 0? Discuss this question
with your neighbor for 1 minute.
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o B, = 0.20, and Jv(ﬁl) = 0.023.

 Can we reject at the 5% level the null hypothesis that

ﬁl — 0?
a) Yes

b) No



Yes!

e |f we want to have 5% chances of wrongly rejecting f; =
0, test is:

—~

Reject B, = 0 if —£1= > 1.96 or —21— < —1.96.

Otherwise, do not reject 5; = 0.
[

e Here, =
1/V(31)

e The percentage of the words of the email that are the
word “free” is a statistically significant predictor of
whether the email is a spam or not!

= 8.63 => we can reject 5; = 0.

* Find the 95% confidence interval for 5;. You have 2mns.



iClicker time

o B, = 0.20, and Jv(ﬁl) = 0.023.

 The 95% confidence interval for [;is:
a) [0.155,0.245]
b) [0.143,0.228]




95% confidence interval for 51 is [0.155,0.245]

e B, =0.20, and Jv(ﬁl) = 0.023.
e The 95% confidence interval for [;is [ﬁl —

1.96\/V(ﬁ1),,§1 + 1.96\/V(,[§1)].

* Plugging in the values of ,31 and \/V(ﬁl) vields
[0.155,0.245].
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Dependent Variable: SPAM
Method: Least Squares
Date: 04/26/17 Time: 15:56
Sample: 1 4601

Included observations: 4601

a) It has alow R-squared.

Variable Coefficient  Std. Error t-Statistic Prob.

PERCENT WORD FREE 0.201984 0.023411 8.627873 0.0000

0.372927 0.007555 49.35958 0.0000
R-squared 0.015928 Mean dependent var 0.394045
Adjusted R-squared 0.015714 S.D. dependent var 0.488698
S.E. of regression 0.484843 Akaike info criterion 1.390450
Sum squared resid 1081.098 Schwarz criterion 1.393247
Log likelihood -3196.730 Hannan-Quinn criter. 1.391434
F-statistic 74.44020 Durbin-Watson stat 0.032029
Prob(F-statistic) 0.000000

b) It has a high R-squared.

Does regression has a low or a high R-squared?



Our regression has a low R?

e The R? of the regression is equal to 0.016.

e R?included between 0 and 1. Close to 0: bad
prediction. Close to 1 good prediction.

 Here close to 0 => bad prediction.



If we use this regression to construct a spam
filter, filter will be pretty bad.

e We can compute [y+[1x for each email in our sample.

e 39% of those 4601 emails are spams => we could say: we
predict that the 39% of emails with highest value of
Po+f1x are spams, while the other emails are not spams.

 We can look how this spam filter performs in our sample.

e Among the non-spams we correctly predict that 85% are
not spams, but we wrongly predict that 15% are spams.

e Among the spams, we correctly predict that 35% are
spams, but we wrongly predict that 65% are non-spams.

e =>if Gmail used this spam filter, you would receive many
spams, Gmail would send many true emails to your trash,
and you would change your email account to Microsoft.

* |Inthe homework, you will see how to construct a better
spam filter.



What you need to remember, and what’s next

e In practice, many instances where we can measure the
VS, the variable we do not observe for everyone, for a
sample of population.

* We can use that sample to compute B, and 3, and
then use [, +[1x) as our prediction of the y;, s we do
not observe.

 If that sample is a random sample from the population,
Bo +51x; should be close to 5, 4+, Xy, the best affine
prediction for yy.

e But univariate affine regression might still not give
great predictions: spam example.

 There are better prediction methods available. Next
lectures: we see one of them.



