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Traders make predictions

e Traders, say oil traders, speculate on the price of oil.
e When they think the price of oil will go up, they buy oil.
e When they think the price will go down, they sell oil.

e To inform their buying / selling decisions, they need to
predict whether the price will go up or down.

 To make their predictions, they can use the state of the
economy today. E.g.: if world GDP is growing fast today,
the price of oil should increase tomorrow.

e =>traders need to use variables available to them to
make predictions on a variable they do not observe:
the price of oil tomorrow.



Banks make predictions

When someone applies for a loan, the bank needs to decide:
— Whether they should give the loan to that person.
— And if so, which interest rate they should charge that person.

To answer these questions, the bank needs to predict the amount
of the loan that this person will fail to reimburse. They will charge
high interest rate to people who are predicted to fail to reimburse a
large amount.

To do so, they can use all the variables contained in application:
gender, age, income, ZIP code...

Can also use credit score of that person: FICO score, created by
FICO company. All banks in US share information about their
customers with FICO. Therefore, for each person FICO knows: total
amount of debt, history of loans repayment... People with lots of
debt and who often defaulted on their loan in the past get a low
score, while people with little debt and no default get high score.

Here as well, banks try to predict a variable they do not observe
(amount of the loan the person will fail to reimburse) using
variables that they observe (the variables in her application + FICO).



Tech companies make predictions

A reason why people prefer Gmail over other mailboxes is that
Gmail is better than many mailboxes at sending directly spam
emails into your trash box.

e They could ask a human to read the email and say whether it’s a
Spam or not. But that would be very costly and slow!

e Automated process: when a new email reaches your mailbox, Gmail
needs to decide whether it should go into your trash because it’s a
Spam, or whether it should go into your regular mailbox.

e To do so, the computer can extract a number of variables from that
email: number of words, email address of the sender, the specific
words used in the email and how many times they occur...

e Based on these variables, it can try to predict whether the email is a
real email or a spam.

e Here as well, Gmail tries to predict a variable they do not observe
(whether that email is a Spam or not) using variables that they
observe (number of words, email adress of the sender, the specific
words used in the email...).



Using variables we observe to make predictions
on variables we do not observe.

e Many real world problems can be cast as using

varia
varia

— eit

oles we observe to make predictions on
oles we do not observe:

her because they will be realized in the future

(e.g.: the amount that someone applying today for a
one year to loan will fail to reimburse will only be
known in one year from now)

— or because observing them would be too costly
(e.g.: assessing whether all the emails reaching all
Gmail accounts everyday are spams or not).



We will study a variety of models one can use to
make predictions.

* |n all the following lectures, we are going to study
how we can construct statistical models to make
predictions.

 We will start by studying the simplest prediction
model: the ordinary least squares (OLS) univariate
linear regression.



Roadmap

1. The OLS univariate linear regression function.
2. Estimating the OLS univariate linear regression function.
3. OLS univariate linear regression in practice.



Set up and notation.

e We consider a population of N units.

— N could be number of people who apply for a one-year loan with bank
A during April 2018.

— Or N could be number of emails reaching all Gmail accounts in April
2018.

e Each unit k has a variable y,, attached to it that we do not observe.
We call this variable the dependent variable.

— Inthe loan example, y, is a variable equal to the amount of her loan
applicant k will fail to reimburse when her loan expires in April 2019.

— In email example, yy is equal to 1 if email k is a spam and O otherwise.
e Each unit k also has 1 variable x; attached to it that we do observe.
We call this variable the independent variable.
— In the loan example, x; could be the FICO score of applicant k.

— In the email example, x;, could be a variable equal to 1 if the word
“free” appears in the email.



Are units with different values of x;, likely
to have the same value of y,,?

e Based on the value of x;, of each unit, we want to
predict her yy.

e E.g.:in the loan example, we want to predict the
amount that unit k will fail to reimburse based on
her FICO score.

 Assume that applicant 1 has a very high (good) credit
score, while applicant 2 has a very low (bad) credit
score.

e Do you think that applicant 1 and 2 will fail to
reimburse the same amount on their loan?



No!

e Based on the value of x;, of each unit, we want to
predict her y,.

e E.g.:intheloan example, we want to predict the
amount that unit k will default on her loan based on
her FICO score.

e Assume that applicant 1 has a very high (good) credit
score, while applicant 2 has a very low (bad) credit
score.

Do you think that applicant 1 and 2 will fail to
reimburse the same amount on their loan?

 No, applicant 2 is more likely to fail to reimburse a
larger amount than applicant 1.

e Should you predict the same value of y, for applicants
1and 2?
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No! Your prediction should be a function of x;,

e Based on the value of x;, of each unit, we want to predict her y,,.

e E.g.:intheloan example, we want to predict the amount that unit
k will default on her loan based on her FICO score.

e Assume that applicant 1 has a very high (good) credit score, while
applicant 2 has a very low (bad) credit score.

e Should you predict the same value of y,, for applicants 1 and 2?

 No! If you want your prediction to be accurate, you should predict a
higher value of y, for applicant 2 than for applicant 1.

e Your prediction should a function of xy, f (x).

* Inthese lectures, we focus on predictions which are a linear
function of x;: f(x;) = axy, for some real number a.

 Which measure can you use to assess whether ax;, is a good
prediction of y; ? Discuss this question with your neighbor for 1
minute.
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iClicker time

e To assess whether ax,, is a good prediction of
Vi, we should use:

a) yx — axy
b) axy + yy



Vi — aAXp!

e Based on the value of x;, of each unit, we want to predict her y,.

e Our prediction should a function of x, f (x;). We focus on
predictions which are a linear function of x;,: f(x;) = axy, for
some real number a.

 Which measure can you use to assess whether axy is a good
prediction?

* Yy — axy,the difference between your prediction and yy.

* Intheloan example, if y, — axj is large and positive, our prediction
is much below the amount applicant k will fail to reimburse.

e |Ify, — ax; islarge and negative, our prediction is much above the
amount person k will fail to reimburse.

e Large positive or negative values of y, — ax; mean bad prediction.
* Yy, — ax close to 0 means good prediction.
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iClicker time

 Which of the following 3 possible values of a
should we choose to ensure that ax; predicts well
v in the population?

a) The value of a that maximizes Y-, (vx — axy)

b) The value of a that minimizes Y n_,(yi — axy) .

c) The value of a that minimizes Y.h_ (v, — ax;)?.



Minimizing Y:8_ (v, — ax;) won’t work!

e Minimizing Xn—1(yx — axy) means we try to avoid
positive prediction errors, but we also try to make
the largest possible negative prediction errors!

* Not a good idea: we will systematically overestimate

Yk -

 We want a criterion that deals symmetrically with
positive and negative errors: we want to avoid both
positive and negative errors.



Answer: find the value of a that minimizes
N 2
k=1()’k — axy)

o YN_.(yx — axy)? is positive. => minimizing it =
same thing as making it as close to O as
possible.

o If 2112’=1(J’k — ax;)? is as close to 0 as possible,
means that the sum of the squared value of our
prediction errors is as small as possible.

e =>we make small errors. That’s good, that’s
what we want!



Which prediction function is the best?

e Population has 11 units. x; and y;, of those 11 units are
shown on the graph: blue dots.

e Two linear prediction functions for y;: 0.5x; and 0.8x;,.
e Which one is the best? Discuss this 1mn with your neighbour.
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iClicker time

* On the previous slide, which function of x,
gives the best prediction for y,:

a) 0.5x,



0.5x}, is the best prediction function!

e |tisthe function for which the sum of the squared of the
prediction errors are the smallest.

Prediction
10 error of 0.8x
for the person
8 with x=8
6 /
4 _
o
2 e Prediction
. error of 0.5x
0 * | | for the person
0 2 4 6 with x=6
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The OLS univariate linear regression function

in the population.
e let

N
— : ( _ )2
a = argmingeg Vi — aXy
k=1

 We call ax; the ordinary least squares (OLS) univariate linear
regression function of y; on x;, in the population.

e Least squares: because ax; minimizes the sum of the squared
difference between y;, and ax;,.

e Ordinary: because there are fancier way of doing least squares.

 Univariate: because there is only one independent variable in the
regression, xy,.

e Linear: because the regression function is a linear function of x;,.

* Inthe population: because we use the y,s and x;s of all the N units
in the population.

e Shortcut: OLS regression of y; on xj, in the population.



Decomposing y;, between predicted value
and residual.

e «a: coefficient of x;, in the OLS regression of y, on x; in the population.

e Lety, = axy. Vi is the predicted value for y;, according to the OLS
regression of y,. on x;, in the population.

e letey = Yr — V. €: error we make when we use OLS regression in the
population to predict yy.

e We havey, =y, + €.
v, =predicted value + error.

Predictior
error for
person with
X=8

Predicted

value of y;,
i for person
with x=8

B O R, N W DM GO O




Finding a formula for « when N = 2.

e Assume for a minute that N = 2: there are
only two units in the population.

* Then « is the value of a that minimizes
(y1 —ax1)* + (y, — axy)”.

e Find a formula for «, as a function of y,, x4,
V>, and x,. You have 3 minutes to try to find
the answer. Hint: you need to compute the
derivative of (y; — ax;)? + (y, — ax,)? with
respect to a, and then « is the value of a for
which that derivative is equal to O.
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iClicker time

e If N =2, a is equal to:
)x1y1+x2y2
X1+XZ

b X1Y1+X2Y>
) —S5—=
xl +x2

d

2 2
X1” Y1+tX2" Y2

x1+x2

C)



X1Y1+X2Y>
e

When N =2, a =

X412 +x5

e If N =2, aisthe value of a that minimizes (y; — ax;)? +
(y2 — axz)*.
e The derivative of that function wrt to a is:
—x12(y1 — axy) — x32(y, — axy).
e Let’s find value of a for which derivative = 0.
—2x1(y1 —axy) — 2x,(y, —ax,) =0
iif —2x;y; + 2ax1% — 2x,y, + 2ax,% =0
iif 2a(x1? + x3%) = 20191 + X2)5)
‘s _ X1Y11t X2
iif a= 2l

e Second line of derivation shows that derivative increasing in a. => if

X +X . . . X +Xx . .
a < 2217722 qerivative negative. If a > 222177222 derjvative
X1 +Xo X1

+x2
positive.

X1y1+tX2Y2 _ _ X1Y1+tX2)2
2 . —> a - 2 .

* Function reaches minimum at

xlz +X2 xlz +X9



Reminder: P4Sum

e PASum: let f1(a), f>(a),..., fy(a) be N
functions of a which are all differentiable wrt

to a. Let ;' (a),f5 (a),...fy (a) denote their
derivatives. Then, Y ¥_, fi. (a) is differentiable
wrt to a, and its derivative is Y.n— fx ().

* |In words: the derivative of a sum is the sum of
its derivatives.



Finding a formula for a for any value of N.

e Let’s get back to the general case where N is
eft unspecified.

e Remember, a is the value of a that minimizes

1]¥=1()’k — axy)?.

e Find a formula for «, as a function of y4,..., yn
and x,...,Xy. You have 3 minutes to find the
answer. Hint: you need to compute the
derivative of Yn_ (i, — ax;)?with respect to
a, and then « is the value of a for which that
derivative is equal to O. .




iClicker time

 a isequalto:
legzlxkyk

b X1Y1+tX2Y>2
) =% 3
X1 +x2

a)




N
Zk:l xkyk

d = TN 2

° m|n|m|zes Y _ (¥ — axy)?. Derivative wrt to a
is: Y=~ XkZ(YR — axy)]. Why?
e Let’s find value of a for which derivative = 0.

k=1[—2x, (yx — ax; )] = 0
iif YN_1[—2x,Vr + 2ax,%] = 0
iif Yp=1 —2Xk Vi + Xi=1 2ax% = 0
iif —2¥ 51 XYk +2a Xy x> =0
if2a Y -1 %k = 2 X1 XYk

Z X
llfa — k 1 k3’k
k 1 XK
N
Zk=1 XkYVk D= 1kak

* Function reaches minimum at =S = .




What you need to remember

Population of N units. Each unit k has 2 variables attached to it:
Vi is a variable we do not observe, x;, is a variable we observe.

We want to predict the y, of each unit based on her xy,.

E.g.: a bank wants to predict the amount an applicant will fail to
reimburse on her loan based on her FICO score.

Our prediction should be function of x;, f (x).

For now, focus on linear functions of x;: ax; for some number
a

Good prediction should be such that y,, — ax,, difference
between prediction and yy, is as small as possible for most units.

The best value of a is the one that minimizes Y.¥_, (y, — ax;)?.
We call that value «, and we call ax;, the OLS univariate linear
regression function of y; on xj.

fN = 2 a = 2217%2%2 yo4 should know how to prove that.
X1 +X

N
Lic=1 k2% You should know how to prove that.

In general, a =


Ryan Longmuir 
key idea slide 


Roadmap

1. The OLS univariate linear regression function.
2. Estimating the OLS univariate linear regression function.
3. OLS univariate linear regression in practice.
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Can we compute a?

e QOur prediction for y;, based on a univariate
linear regression is axy, the univariate linear
regression function.

e =>t0 be able to make a prediction for a unit’s
Vi based on her x;, we need to know the
value of «.

 Under the assumptions we have made so far,
can we compute a? Discuss this question with
vour neighbor during 1 minute.
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iClicker time

e Under the assumptions we have made so far,
can we compute a?

a) Yes
b) No



We do not observe the y, s, => we cannot
compute

e Remember, we have assumed that we observe
the x;s of everybody in the population (e.g.
applicants’ FICO scores) but not the y,s (e.g.
the amount that a person applying for a one-
vear loan in April 2018 will fail to reimburse in
April 2019 when that loan expires).

N
Zk:l xkyk
N 2 °
Zk:l xk

e =>Wwe cannot compute a =



But we can estimate a if we observe the
VS of a sample of the population.

e But we can estimate a if we observe the y;s of a
sample of the population.

e E.g.:inthe Gmail example, we could select a
random sample of emails, and ask a human to
determine whether those emails are spams or
not.



Randomly sampling one unit.

 Assume we randomly select one unit in the population, and we
measure the dependent and the independent variable of that unit.

e E.g.: we randomly select one email out of all the emails reaching
Gmail accounts on May, 1%, 2018, and we look whether this is a
spam or not, and whether it contains the word “free” or not.

e LetY; and X; respectively denote the value of the dependent and
of the independent variable for that randomly selected unit.

Y, and X, are random variables, because their values depend on
which unit of the population we randomly select.

e |f we select the 34th unit in the population, Y; = y3, and X; = x34.

e Each unitin the population has the same probability, %, of being
selected.

e Whatis the value of E(X,Y;)? Hint: E(X;Y;) is a function of all the
V.S and of all the x;s. Discuss this question with your neighbor
during 2mns.
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iClicker time

Assume we randomly select one unit in the population, and we
measure the dependent and the independent variable of that unit.

Let Y; and X, respectively denote the value of the dependent and
of the independent variable for that randomly selected unit.

Y; and X, are random variables, because their values depend on
which unit of the population of the population we randomly select.

Each unit in the population has a probability% of being selected.
What is the value of E(X{Y;)?

a) E(X1Y1) = xxyx

1
b) E(XiY7) = N211¥=1 XYk
c) E(XiY1) = ZIIX=1 XkYk



E(X.Y;) = k 1 XkYk

e X Yiis equal to:

— x4y, if the first individual in the plopulation is
selected, which has a probability — of happening

— X, if the second individual in the population is
selected, which has a probablllty ~ of happening

— xn Yy if the Nth individual in the populatlon is
selected, which has a probablllty _ of happenlng

e Therefore, E(X,Y;)= Z —XRYR— ZN 1 Xk Yk

e What is the value of E(X1 )? Discuss this
guestion with your neighbor during 1mn.
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iClicker time

We randomly select one unit, and we measure the dependent
and the independent variable of that unit.

Let Y; and X, respectively denote the value of the dependent
and of the independent variable for that randomly selected
unit.

Y; and X, are random variables, because their values depend
on which unit of the population of the population we
randomly select.

Each unit in the population has a probability % of being
selected.

What is the value of E(X;?)?

a) E(X12 ) = %Z?z’ﬂ X’
D) E(X12 ) = %Zligﬂ Xk
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E(Xl ) __Zk L Xp 2

e X,% is equal to:
— x,% if the first individual in the population is
selected, which has a probability % of happening

— x,2 if the second individual in the population is
selected, which has a probability % of happening

— xy*? if the Nth individual in the population is
selected, which has a probability L of happening

* Therefore, E(X1 ) > 1—xk2 —1 N xp?



Randomly sampling n units.

e We randomly draw n units with replacement from the
population, and we measure the dependent and the
independent variable of those n units.

 Foreveryiincluded between 1 and n, Y; and X; = value of the
dependent and of the independent variable of the ith unit we
randomly select.

 The Y;s and X;s are independent and identically distributed.

e Foreveryiincluded between 1andn, E(X;Y;) = - I;X=1 XkYk

N
and E(X;*) = %Zﬁ'zlxkz .



A method to estimate «.

 We want to use the Y;s and the X;s to estimate «.
e Remember: a is the value of a that minimizes Y r_1 (Vx — axy)?.

e =>to estimate «, we could use @, the value of a that minimizes
* Instead of finding the value of a that minimizes the sum of squared

prediction errors in the population, find value of a that minimizes
the sum of squared prediction errors in the sample.

e |Intuition: if we find a method to predict well the dependent
variable in the sample, that method should also work well in the full
population, as our sample is representative of the population.



The OLS regression function in the sample.

Let

n
@ = argminger ) (% — aX,)?
=1

We call @X; the OLS regression function of Y; on X; in the sample.

In the sample: because we only use the Y;s and X;s of the n units in
the sample we randomly draw from the population.

a: coefficient of X; in the OLS regression of Y; on X; in the sample.

Let ¥; = @X;. Y, is the predicted value for Y; according to the OLS
regression of ¥; on X; in the sample.

Let &; = Y; — V. é;: error we make when we use OLS regression in
the sample to predict Y;.

We have Y; = Y; + é;.

Find a formula for &, the value of a that minimizes >, (Y; — aX;)?.
Hint: differentiate this function wrt to a and find the value of a that
cancels the derivative.
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iClicker time

* The value of a that minimizes > ,(Y; — aX;)? is:

n 2

n

1 XY
C) =1




?:1 XlYl
Yicq
e Derivative wrtto a of X1-,(Y; — aX;)? is: X1, [—X;2(Y; —
aX;)]. Why?
e Let’s find value of a for which derivative = 0.
_|=X;2(Y; —aX;)] =0
ufz o |—2XY; + 2aX%] = 0
iif Ny —2X;Y; + X, 2aX;° = 0
if —2Y"% X;Y; +2a¥™ X" =0

if2ay™ X2 =230 X;Y,
g NI 1X Y
iif a= S

Z?=1Xiyi

X

Value of a minimizing Y1, (Y; — aX;)% is

a =



Reminder: the law of large numbers.

 LLN: Let Z4,..., Z,, be n iid random variables,

and let m denote their expectation.
- 1 vn _
nl—1>r-|¥loo nzi:l Ly =m.
* When the sample size grows, the average of n
iid random variables converges towards their

expectation.



@ converges towards @ when the sample size
grows.

e We randomly draw n units with replacement from the population,
and we measure the dependent and the independent variable of
those n units.

 Foreveryiincluded between 1 and n, Y; and X; = value of the
dependent and of the independent variable of the ith unit we
randomly select.

e Because the n units are drawn with replacement (Y;, X;) areiiid,
and therefore the X;Y;s are iid, and the X s are also iid.

e Foreveryi mcluded between 1and n, E(X;Y;) = =X ~_1 X;Vy and
E(X' ) = Zk=1xk
S h- 1xkyk i=1 XY
e a= and @ = =%2=———-.
z:k 1 Xk o1 Xi°
e Use the law of large numbers to show that hT @ = a. Hint: you
Nn—+00

need to use the fact that E(X;Y;) = Zk 1 X Vi and E(X ) =

Zk 1 Xk
46



iClicker time

e Which of following two arguments is correct:

a) The law of large numbers implies that lir_P Y XY =
n—100

E(X;Y;) and lir+n Y oXt = E(Xl-2 ). We have
N—>—+00

1 1
E(X;Y;) = ;Z’Ll Xy and E(X;% ) = ;Z’;Ll X .

Therefore, lim & = «.
n—+4+oo

b) The law of large numbers implies
that lim =™, X,Y; = E(X;Y;) and

n—-o+oon
’}ETOO%ZL X;* = E(X;® ). We have E(X;Y;) =
NZ’,\Ll XeYie and E(X;% ) = %2112’:1 x* . Therefore,
lim & = «a.

n—-4oo



The second argument is correct

e We randomly draw 1 units with replacement from the population, and we
measure the dependent and the independent variable of those n units.

e Foreveryiincluded between 1 and n, Y; and X; = value of the dependent
and of the independent variable of the ith unit we randomly select.

e Because the n units are drawn with replacement, (Y}, X;) are iid.

 Foreveryi included between 1 and n, E(X;Y;) = %Zﬁ’:lxkyk and
E(X ) =~ Yk=1%K

e Thelaw oflarge numbers implies that lim Z -, X;Y; = E(X;Y;) and

2 n—-+oon
lim 1 Xi° =E X:%).
lim ~3 X, (x:*)
1
* Moreover, We have E(X;Y;) = ~ N X Vi and E(X ) ==yl _ x,2
e Therefore:
. 1
A n XY . 12" (Xi¥y  Hm oS XiVe  p(xgyy)
lim @ = lim —2=1m = = =
n—+co n—+oo Yi—q X; n—+oo = Z"lX, llm Z"le E(Xi )

1 ¢N

N2k=1 XkYVk . Zk—l XkVk
1 «N - N 2
N2k=1xk2 Lk=1 Xk

= Q.
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What you need to remember

Prediction for y;, based on OLS regression in population is ax;, with a =
leg=1 XkYk

ZIIX=1 xk2 .

We would like to compute a but we cannot because we do not observe
the y, s of everybody in the population.

=> we randomly draw n units with replacement from the population, and
measure the dependent and the independent variable of those n units.

For every i between 1 and n, Y; and X; = value of dependent and
independent variables of the ith unit we randomly select.

Given that « is value of a that minimizes ;ﬁzl(yk — axy)?%, we use &, the
value of a that minimizes i, (Y; — aX;)* to estimate a.

~ n_x.v.
We have @ = 21—
Zi=1 X
Law of large numbers implies that lim & = a.

n—-+oo
When the sample we randomly draw gets large, &, the sample coefficient
of the regression, gets close to a, the population coefficient.

Therefore, @ is a good proxy for « when the sample size is large enough.



Roadmap

1. The OLS univariate linear regression function.
2. Estimating the OLS univariate linear regression function.
3. OLS univariate linear regression in practice.
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How Gmail uses univariate linear regression (1/2)

Gmail would like to predict y,, a variable equal to 1 if email k is a
spam and O otherwise.

To do so they use a variable x;,, a variable equal to 1 if the word
“free” appears in the email and 0 otherwise.

X}, is easy to measure (a computer can do it automatically, by doing
a search of “free” in the email), but y,, is hard to measure: only a
human can know for sure whether an email is a spam or not. =>
they cannot observe y;, for all emails reaching Gmail.

To make good predictions, they would like to compute, «, the value
of a that minimizes Y.*_;(yx — ax)?, and then use ax; to predict
V. aXy: best univariate linear prediction of y, given x;.

2%:1 XkYVk
leg=1 xg?
all the y;.s, but that would be very costly to do (a human has to
read all the emails reaching Gmail accounts), plus once it’s done we
no longer need to predict the y, s because we know them.

Issue: a = => they cannot compute it unless they observe



How Gmail uses univariate linear regression (2/2)

e |nstead Gmail can draw a random sample of, say, 5000
emails, ask humans to read them and determine whether
they are spams or not.

e Foreveryibetween 1and 5000, let Y; denote whether the
ith randomly drawn email is a spam or not, and let X;
denote whether the ith randomly drawn email has the
word free in it.

Yi=1 XiYi
P Xi®
e For all the emails they have not randomly drawn, and for

which they do not observe y,, they can use @x;, as their
prediction of whether the email is a spam or not.

e Because their random sample of emails is large, & should
be close to a, and therefore @x; should be close to axy,
the best univariate linear prediction of y;, given x.

e Then, people in Gmail can compute & =



How banks use univariate linear regression (1/2)

* A bank would like to predict y,, a variable equal to the
amount that a person applying in April 2018 for a one-year
loan will fail to reimburse in April 2019 when her loan expires.

 To do so they use a variable x;, equal to the FICO score of that
applicant.

* X is easy to measure (the bank has access to the FICO score
of all applicants), but y; is impossible to measure today: it’s
only in April 2019 that the bank will know the amount the
applicant fails to reimburse.

 To make good predictions, they would like to compute «, the
value of a that minimizes Y.n—1(yx — ax;)?, and then use
ax; to predict y,. ax;: best univariate linear prediction of

Vi given xy.

N
zél;\}:l 9;k3;k => they cannot compute because they do
k=1"'k

not observe the y;s.

e |ssue:qa =



How banks uses univariate linear regression (2/2)

e |nstead, the bank can use data on people who applied in April 2017
for a one-year loan. For those people, they know how much they
failed to reimburse on their loan. Let’s assume that the bank has
1000 applicants in April 2018, and 1000 applicants in April 2017.

 Foreveryibetween1land 1000, let Y; denote the amount that the
ith April 2017 applicant failed to reimburse on her loan, and let X;
denote the FICO score of that applicant.

Yiz1 Xi¥i
Z?=1 Xiz .
e For their April 2018 applicants, for which they do not observe y;,,

they can use @x;, as their prediction of the amount each applicant
will fail to reimburse.

 Which condition should be satisfied to ensure @ is close to a? Hint:
look again at the Gmail example. There is one difference in the way
we select the observations for which we measure Y; in the bank and
in the Gmail example. Discuss this question with your neighbor for
one minute.

e Then, people in the bank can compute & =
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iClicker time

e Which condition should be satisfied to ensure & is
close to a?

a) The April 2017 applicants should look very
similar to the April 2018 applicants (e.g.: they
should have similar FICO scores, etc.)

b) The number of April 2017 applicants should be
close to the number of April 2018 applicants.
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April 2017 and 2018 applicants should look similar

* Previous section: @ converges towards « if sample of units for which we
observe Y; randomly drawn from population.

e The bank cannot draw random sample of April 2018 applicants and observe
today the amount this sample will fail to reimburse.

e Instead, can use the April 2017 applicants, for which they can both measure Y;,
amount that each applicant failed to reimburse, and X;, FICO score.

e Then, can compute &, and for each April 2018 applicant they can use @x;, as
their prediction of y,., the amount each applicant will fail to reimburse.

e |If April 2017 applicants are “as good as” a random sample from combined
population of April 2017 and April 2018 applicants, then all our theoretical
results apply: & should be close to a, and our predictions should be good.

 To assume that April 2017 applicants are almost a random sample from the
population of April 2017 and April 2018 applicants, April 2017 and April 2018
should look very similar. E.g.: should have similar FICO scores, demographics...

e =>if two groups look similar, &x; should be good prediction of y; for 2018
applicants. Otherwise, we have to be careful.



What you need to remember, and what’s next

* |n practice, there are many instances where we can measure the
Vi S, the variable we do not observe for everyone, for a subsample
of the population.

e We can use that subsample to compute & , and then use &x;, as
our prediction of the y, s we do not observe.

e If that subsample is a random sample from the population (Gmail
example), &x; should be close to ax,, best linear prediction for y,.

 On the other hand, if that subsample is not a random sample from
the population (bank example),&x; will be close to ax; only if the
subsample looks pretty similar to the entire population (almost a
random sample).

e Even when we have a random sample, univariate linear regression
might still not give great predictions.

 There are better prediction methods available. Next lectures: we
see one of them.



