Polling and sampling.

Clement de Chaisemartin

UCSB



What pollsters do

* Pollsters want to answer difficult questions:

As of November 15t 2016, what % of the Pennsylvania
electorate wants to vote for Hillary Clinton?

PENNSYLVANIA
L




A brute force solution

* |Interview all registered voters in Pennsylvania,
and ask them if they want to vote for Clinton

* |ssue: there are 8,448,674 registered voters in
Pennsylvania!

Only 8,445,953
interviews left...




A smarter solution

e Luckily, you have two very smart friends:

* Interview a sample of registered voters in Pennsylvania. Find that
53% of them intend to vote for Clinton.

 Then go to E-views, and make this very cryptic statement:

“We can be 95% confident that the share of registered voters in
Pennsylvania that are willing to vote for Clinton is included between
50.8% and 55.2%. Moreover, we can be more than 99% confident that
more than 50% of Pennsylvania voters are willing to vote for Clinton.”



How many voters do we need to interview
to make such a precise statement?

After interviewing a sample of registered voters, your
friends are able to make a very precise statement.

Able to say that the share of voters that want to vote
for Clinton has a very large probability (95%) to be
included in a very narrow interval ([50.8%,55.2%]).

Given that there are 8,448,674 registered voters
in Pennsylvania, how many of them do you
think that your friends had to interview to make
such a precise statement? Discuss this question
with your neighbor for 1 minute.



iClicker time

* Given that there are 8,448,674 registered voters in
Pennsylvania, how many of them do you think that
your friends had to interview to make such a precise
statement?

a) 2,000,000
b) 200,000
c) 20,000
d) 2,000



2000 is enough!

 What we are going to see in these lectures is that interviewing
2000 Pennsylvania voters is enough to make such a precise
statement, provided 4 assumptions are satisfied.



Roadmap

1. Lay-out 4 assumptions.

2. Show that if those 4 assumptions are satisfied, then what
your friend is saying is indeed correct. Along the way,
learn more general lessons about expectation estimation,
hypothesis testing, and confidence intervals.

3. Critically assess those 4 assumptions. Relatedly, discuss
potential explanations for why polls failed to predict the
outcome of the last US presidential election. Briefly
present job opportunities for econ majors in polling firms.



Part 1: the 4 magical assumptions
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Assumption 1: your friend has access
to some register including the contact
details of all voters in Pennsylvania

 Plausible?

* Instead, to which large register with people’s
contact details do you think polling firms have
access?

* For now, let’s assume that actually, the firm has
access to this ideal register.

* Assumption 1 is called: sampling from the whole
population.
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Assumption 2: your friend randomly drew
the sample of 2000 voters he/she is going
to interview out of this register.

 Plausible?

* Assumption 2 is called: random sampling.
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Assumption 3: when he contacts them, the
2000 voters all answer your friend.

 Plausible?

* Assumption 3 is called: no nonrespondents.
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Assumption 4: when they respond to your
friend’s question: “Are you willing to vote
for Hillary Clinton?”, the 2000 voters
respond truthfully.

 Plausible?

* Assumption 4 is called: truthful responses.
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Fundamental result of polling theory:

* |f Assumptions 1 to 4 are satisfied, then your
friend’s answer to the question “What is the
fraction of the Pennsylvania electorate that
wants to vote for Hillary Clinton?” is correct!
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What you need to remember

Polls/surveys use answers from a sample of a large population
to infer the answers of people in the large population.

Powerful method: instead of having to interview, say, the
whole Pennsylvania population, we can learn useful things on
that population by interviewing only 2000 Pennsylvania
residents.

However, polls/surveys can teach you something useful about
the large population only if:

— You can draw the sample of the poll/survey from the large
population.

— You draw the sample of the poll/survey randomly from the
large population.

— All the people you draw agree to answer the survey.
— All of them answer your questions truthfully.
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Roadmap

1. Lay-out 4 assumptions.

2. Show that if those 4 assumptions are satisfied, then what
your friend is saying is indeed correct. Along the way,
learn more general lessons about expectation estimation,
hypothesis testing, and confidence intervals.

3. Critically assess those 4 assumptions. Relatedly, discuss
potential explanations for why polls failed to predict the
outcome of the last US presidential election. Present
briefly job opportunities for econ majors in polling firms.
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Part 2: why the 4 magical
assumptions work!




Part 2.1: Defining our answer

What am | looking for again? I've been
searching it for so long that | do not even
remember... 8,441,663 interviews left...
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First, a question needs an answer...

Let y; be a number equal to 1 if the first voter in the Pennsylvania
register wants to vote for Clinton, and to 0 otherwise. Similarly, for
every k included between 1 and 8,448,674, let y, be a number equal
to 1 if person k wants to vote for Clinton, and to 0 otherwise.

The yjs are NOT random variables: whether person k wants to vote for
Clinton or not is something deterministic, that person k knows. The y;.s
are just numbers.

c

8,448,674

letc=y;+ y,+ -+ + Yg44g674, and letp =

What do c and p represent? Discuss this
guestion with your neighbor for 1 minute.
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* letc=y;+ y,+ -+ Yga4g674, and letp =

C
8,448,674
a) cisthe sum of the wages of all Pennsylvania voters,
and p is their average wage.

. What do c and p represent?

b) cis the number of Pennsylvania voters, and p is
equal to 1.

c) cisthe number of Pennsylvania voters who want to
vote for Clinton, and p is the percentage of
Pennsylvania voters who want to vote for Clinton.



..-s our answerl!

C
b= 8,448,674

* ¢=Yy;+ Y+ -+ Yg448674 IS the number of Pennsylvania
voters that want to vote Clinton, so p is the proportion of
Pennsylvania voters that want to vote for her.

* Everybody see that? If not, speak up now, or during sessions,
this is key!

Now | remember, | am after p. Only
8,439,331 interviews left before | can

compute it
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Part 2.2: Is it enough to interview
one voter?
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Is it enough to interview one voter?

* |n this section, we assume we randomly choose a
number between 1 and 8,448,674, and then ask
the voter with that number in our register if she
wants to vote for Clinton.

* |s that person’s answer enough for us to infer
which percentage of the Pennsylvania electorate
wants to vote for Clinton?

* To answer this question, we will study in great
detail some properties of that person’s answer.
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Which values can that person’s answer
take?

* Assume we randomly choose 1 voter from the
register. We interview that person, and ask her
if she wants to vote for Clinton.

* Let Y; denote the answer of that person.
* What value can Y; take?



“Yes” or “No” which we respectively code
as 1andO.

* What value can Y; take?

* Y; can be equal to “Yes”, if the voter you drew
from the register wants to vote for Clinton,
and to “No” otherwise. Because it’s easier to
work with numbers than with words, we will
say that Y;= 1 if the voter says yes, and Y;=
0 if the voter says no.
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Is that person’s answer deterministic or
random?

 Assume we randomly choose 1 voter from the
register , that we interview that voter, and ask
her if she wants to vote for Clinton.

* Let Y; denote the answer of that voter.

* So far we have learned that Y; can either be
equal to O or to 1.

* Is Y; a deterministic number or a random
variable?
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It is random, it depends on which voter we
randomly draw from the register!

Is Y; a deterministic number or a random variable?

Y, is a random variable. Before we choose the voter
we interview, we cannot know whether Y; will be
equal to 1 or to 0. Assume that voter 32 in the register
wants to vote for Clinton, but voter 37 is not willing to
vote for Clinton. If you randomly choose to interview
voter 32, Y;= 1. If you randomly choose to interview
voter 37, Y;,= 0. Y; is a random variable which
depends on which voter you draw.
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Reminder: definition of the expectation of
a random variable.

e Let X be a random variable that can take K values
X1y ooy XK

e E(X) =xP(X =xq) + -+ xxP(X = xg).

* Another way of writing exactly the same thing is
K

E(X) = 2 o P(X = x7,).
k=1
* Expectation of random variable: weighted average of
the possible values taken by that random variable
weighted by their probabilities.

28
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What is the expectation of that person’s
answer?

* Assume we randomly choose 1 voter from the
register , that we interview that voter, and ask
her if she wants to vote for Clinton.

* Let Y; denote the answer of that voter.

* So far we have learned that Y; is a random
variable that can either be equal to O or to 1.

* What is the expectation of Y;, E(Y;)? Discuss
that question with your neighbor for 1Imn.
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iClicker time

* What is the expectation of Y;, [E(Y;)?
a) E(Y;) =P, =0)+P(Y; =1)

b) E(Y1) =c

c) E(Y1) =P, =1)

d) E(Y;) = P(Y; =0)



L(Y;) = P(Y; = 1), the probability we
draw a voter who wants to vote for Clinton

* So far we have learned that Y; is a random variable that can
either be equal to 0 or to 1.

* What is the expectation of Y;, E(Y;)?
* Expectation of Y;: weighted average of the possible values

taken by Y; (0 and 1) weighted by their probabilities
(P(Y; = 0) andP(Y; = 1)).

* General result: the expectation of a binary random variable
(random variable either equal to O or 1) is equal to the
probability this random variable is equal to 1. You need to
remember that.
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What is the probability we draw a voter
who wants to vote for Clinton?

 Assume we randomly choose 1 voter from the register,
that we interview that voter, and ask her if she wants to
vote for Clinton.

* Let Y; denote the answer of that voter.

* So far we have learned that Y; is a random variable, whose
expectation is P(Y; = 1).

* Whatis the value of P(Y; = 1)? Try to find the answer
with your neighbor. Consider first a simple example where
the register of voters only has 6 people, 3 of whom want to
vote for Clinton. If you randomly draw one of those 6
voters, what is the probability that the one you draw wants
to vote for Clinton?
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iClicker time

* Whatis the value of P(Y; = 1)?
a) P(Yy=1)=c

b) P(Y; = 1) = p?

c) P\ =1)=p

d P(Y;=1)=2p



Answering this question with a simple example
first.

e C=“Clinton”, NC=“Not Clinton”
* In this example, what is the value of p? Of P(Y; = 1)?
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The probability we draw a voter who wants
to vote for Clinton is equal to the % of
voters who want to vote for Clinton!

* So far we have learned that Y; is a random variable,
whose expectation is P(Y; = 1).

* What is the value of P(Y; = 1)?

 P(Y; = 1) = p! The voter we sample can be any of the
8,448,674 voters in the register. % of those voters are

willing to vote Clinton. The probability that we sample a
voter that wants to vote Clinton is p.
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Reminder: estimators, unbiased estimators

Reminder: definition of an estimator. An estimator is a
function of the data we collect. Here, we collect Y3, the
answer of the voter we randomly draw to the question
“do you want to vote for Clinton”. Therefore, any function
of Y; is an estimator: Yy, 2Y;, Y{°...

Reminder: definition of unbiasedness. Assume we
would like to learn the value of a parameter. An unbiased
estimator of that parameter is an estimator whose
expectation is equal to that parameter.

In our example, we would like to learn the value of p.
Find an unbiased estimator of p. Discuss this question
with your neighbor for 1 minute.
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iClicker time

* Which of the following is an unbiased estimator of p?
a) Yq

b) 2Y;

c) E(Y1)



Y, is an unbiased estimator of p

* So far we have learned that Y; is a random variable,
whose expectation is p, the answer we seek.

* Y, isan unbiased estimator of p. Indeed, Y; is a
function of the data we collect, Y;. Moreover,
E(Y;) =p.

 What that means is that when we average the value

that Y; can take across all the voters we can
randomly draw, that average is equal to p.
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Are we likely to fall far from p when we use
that person’s answer to estimate it?

Assume we randomly choose 1 voter from the
register , that we interview that voter, and ask
her if she wants to vote for Clinton.

Let Y; denote the answer of that person.

So far we have learned that Y; is an unbiased
estimator of p.

Are you likely to fall far from p when you use
Y; to estimate it?
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Yes, you will certainly fall far from p!

* So far we have learned that Y; is an unbiased estimator
of p.

* Will you fall far from p when you use Y; to estimate p?

* Yes! Let’s assume for a minute that p = 0.5. If you randomly
draw a voter that wants to vote Clinton, Y; = 1, so you
overestimate p by 0.5. If you randomly draw a voter that does
not want to vote Clinton, Y; = 0, so you underestimate p by
0.5.Y; is an unbiased but imprecise estimator of p.

* Unbiasedness only means that your estimator is equally likely
to over- or underestimate your target parameter. Does not
make systematic mistakes in 1 direction. However, can still
make large mistakes.
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What’s a good measure of the average
mistake we make when using an estimator?

* Assume we randomly choose 1 voter from the
register , that we interview that voter, and ask
her if she wants to vote for Clinton.

* Let Y; denote the answer of that person.

* So far we have learned that Y; is an unbiased
estimator of p, but using it can lead us to
make large mistakes.

* How can we measure the average mistake we
make when we use Y; to estimate p?
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Reminder: the variance of a random
variable.

e Let X be arandom variable.
V(X) = E((X — E(X))?).

* Variance of a random variable: expectation of
the square of the difference between X and
Its expectation.

e The standard deviation of X is

sd(X) = /V(X).

42
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The variance of our estimator.

* So far we have learned that Y; is an unbiased estimator of p,
but using it will lead us to make large mistakes.

* How can we measure the average mistake we make when we
use Y; to estimate p?

o E(|Y;—p|), or E( (Y;—p)?). First: average distance between
our estimator and the target parameter. Second: average
squared distance between our estimator and the target
parameter. Second measure more commonly used, because it
has nice properties.

* Notice that E((Y; — p)?) = E((Y; — E(Y1))?) = V(Yy).

* V(Y,) is a measure of the average mistake we make when
using Y, to estimate p.
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A useful reminder: property 1 of the
variance (P1Var)

* Let X be a random variable.
V(X) = E(X?) — (E(X))*.
* Variance of a random variable: expectation of

the random variable squared minus the
square of its expectation.

* Use this formula to compute V(Y;). Discuss
this question with your neighbor for 1 minute.
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iClicker time

* Which answer is correct?
a) V¥1)=1-p

b) V(Y1) =p(1l—-p)

c) V(¥;) =1-p?

a) V(Y1) =0

e) V(I1) =1



The variance of our estimator is p(1 — p)

e Canyou compute V(Y;)?

* V()

= IE(le) — E(Y;)# | Why is this true?
= E(Y;) — E(Y;)? Why is this true?
=P — pz Why is this true?
=p(1—p)
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What you need to remember

* If we randomly choose one Pennsylvanian voter
and ask her if she wants to vote for Clinton:

— That person’s answer, Y, is an unbiased estimator of
p, the percentage of Pennsylvania voters that want to
vote for Clinton. Y; does not systematically over- or
under-estimate p.

— However, the variance of that estimator is p(1 — p)
which is quite large for values of p close to 0.5 (in
practice, we expect p to be close to 0.5).

— Therefore Y; is not a precise estimator of p.

-
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Part 2.3: Can we improve things by
interviewing two voters?
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Can we improve things by interviewing two
voters?

* |n this section, we are going to assume we
interview 2 voters, and ask them if they want
to vote for Clinton.

* By using the answers of these two people, can
we build a better estimator p?



The 2 voters are chosen with replacement

First, we randomly choose a number between 1 and
8,448,674. We interview the voter with that number in our
register and ask her if she wants to vote for Clinton. Let Y;
denote her answer.

Second, we randomly choose another number between 1 and
8,448,674. We interview the voter with that number in our
register and ask her if she wants to vote for Clinton. Let Y,
denote her answer.

The voters are chosen with replacement: if the first number
we randomly chose was 12,235, we can still randomly choose
12,235 the second time. If that happens (very low
probability), we do not interview voter 12,235 a 2" time, we
just let Y,=1Y; (we already know whether that voter wants to
vote for Clinton, no need to bother her again to ask her).



What is the probability distribution of Y,?

* Assume we randomly choose with replacement 2
voters from the register, that we interview them,
and ask them if they want to vote for Clinton.

* Let Y; and Y, denote the answer of these two
voters.

 What value canY, take?

* Is Y, deterministic or random?
* What is the expectation of Y,?
* What s its variance?
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Y; and Y, follow the same distribution.

Y,= 1 if second voter we draw wants to vote Clinton, Y,= 0
otherwise.

Y, is a random variable. Before we draw the 2"? voter and interview
her, we cannot know whether Y, will be equal to 1 or to 0.
The 2" voter we choose can be any of the 8,448,674 voters in

Pennsylvania. p% of voters are willing to vote Clinton. Therefore,
the probability that 2" voter we draw wants to vote Clinton is p.

One can show that V(Y,) = p(1- p).

Y; and Y, have the same expectation, same variance, and same
probability distribution. We say they are identically distributed.

That’s because the lottery that gives rise to Y, (randomly choose
one voter out of the 8,448,674 in the register) is exactly the same
as that giving riseto Y.
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Reminder: definition of independent
variables.

Formal definition:
— Let X be a random variable that can take K values x4, ..., xg.
— Let Z be a random variable that can take K values zy, ..., zx.
— X and Z are independent iif for any (xy, z;), P(X = x¢, Z = zx) = P(X =
x)P(Z = zg).
* Example: when you draw two fair coins, what is the probability that each

coin gives you a “heads”? What is the probability that the two coins both
give you a “heads”?

* Informal definition: X and Y are independent if knowing the value of X
does not affect the likelihood that Y takes specific values.

* Forinstance, if you know that the first coin gave you a heads, the
probability that the second coin will give you a heads is still %.

* Onthe other hand, if you know that it rained yesterday, that makes it
more likely that it will also rain today.



Are Y; and Y, dependent or independent?

* Assume we randomly choose with replacement 2
voters from the register, that we interview them,
and ask them if they want to vote for Clinton.

* Let Y; and Y, denote the answer of these two
voters.

* So far we have learned that Y; and Y, are
identically distributed.

* Are Y; and Y, dependent or independent?
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Y; and Y, are independent

So far we have learned that Y; and Y, are identically
distributed.

Are Y; and Y, dependent or independent?
Y; and Y, are independent. If the first voter we choose

wants to vote Clinton, the second voter we choose is not
more or less likely to want to vote Clinton.

Y; and Y,: independent and identically distributed (iid).

Independence: the lottery that gives rise to Y; (randomly
choose one voter out of the 8,448,674 in the register) is
conducted independently from that giving rise to Y5, just as
when you independently toss two coins.
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A useful reminder: properties 1 and 2 of
the expectation

* PlExpectation: If X and Z are two random
variables, then E(X + Z) = E(X) + E(Z).

* The expectation of the sum of two random
variable is the sum of the expectation of these
two random variables.

* P2Expectation: If X is a random variable, and a
is a real number, then E(aX) = aE(X).

 Watch out: P2expectation is only true if a is a
real number. If X and Z are two random

variables, usually E(XZ) # E(X)E(Z).
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Can you find an unbiased estimator of p
involving both Y; and Y,?

Assume we randomly choose with replacement 2
voters from the register, that we interview them,
and ask them if they want to vote for Clinton.

Let Y; and Y, denote the answer of these two
voters.

So far we have learned that Y; and Y, are iid
random variables whose expectation is p.

Can you find an unbiased estimator of p involving
both Y; and Y,? Reminder: when we observed
only Y;, our unbiased estimator was Y;. Discuss
this question with your neighbor during 2mns.
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iClicker time

* Which of the following estimators is an unbiased
estimator of p?

a) V1 -Y,
b) Yl - OSYZ
c) 0.5Y; + 0.5Y,



0.5Y; + 0.5Y; is unbiased estimator of p

* Y; and Y,:iid random variables whose expectation is p.

* Canyou find an unbiased estimator of p involving
bothY; and Y,?

* 0.5Y; + 0.5Y; is an unbiased estimator of p.
« [E(0.5Y; + 0.5Y,)

= [E(0.5Y;) + E(0.5Y,) | Why is this true?
= 0.5E(Y;) + 0.5E(Y,) | Why is this true?
= 0.5p + 0.5p Why is this true?
— p_

* Canyou find another unbiased estimator?
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2Y,—Y, is other unbiased estimator of p

* Y, and Y, areiid random variables whose
expectation is p.

* Can you find another unbiased estimator of p
involving both Y; and Y,?

 2Y,—Y, is an unbiased estimator of p.
« E(2Y;—Y,)

= [E(2Y;) + E(—Y5) | Why s this true?
= 2IE(Y;) — E(Y5) Why is this true?
=2p—p Why is this true?
— p_
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Any weighted sum of Y; and Y, is an
unbiased estimator of p.

* Y; and Y;:iid random variables whose expectation is p.

* For any real number x, xY;+(1 — x)Y, is an unbiased
estimator of p:

 ECxY;+(1 —x)Y,)

- [E( xyl) + [E((l — X)Yz) Why is this true?

= xE(Y;) + (1 —x)E(Y,) Why is this true?

=xp+(1—x)p Why is this true?

— p_

 xY; + (1 — x)Y,: linear unbiased estimator of p. Linear
function of Y; and Y5, and unbiased.
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Which criterion should we use to decide
which unbiased estimator of p is the best?

Assume we randomly choose with replacement 2
voters from the register, that we interview them,
and ask them if they want to vote for Clinton.

Let Y; and Y, denote the answer of these two
voters.

So far we have learned that any weighted sum of
Y; and Y, is an unbiased estimator of p.

Which criterion should we use to assess which of
all those unbiased estimators of p is the best?

Discuss this question with your neighbor during
1mn.
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iClicker time

 Which criterion should we use to assess which of all
those unbiased estimators of p is the best?

a) The best estimator is the one with the highest
expectation.

b) The best estimator is the one with the lowest
variance.

c) The best estimator is the one with the lowest
median.



We should choose the estimator with the
lowest variance!

* So far we have learned that for any real number
x, xY;+(1 — x)Y, is unbiased estimator of p.

 Which criterion should we use to decide which
of all those estimators of p we should use?

 We should pick the estimator with the lowest
variance! That’s the estimator that will lead us
to make the least mistakes when using it to

proxy p.
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A useful reminder: the covariance between
two random variables.

* Let X and Z be two random variables.
« cov(X,Z) =E|[(X —EX))(Z - E®@)]
* When X > E(X):
— ifZ> E(Z) (X and Z “agree”) then (X — E(X))(Z—E(Z)) > 0,
— if Z < E(Z) (X and Z “disagree”) then (X — E(X))(Z — E(Z)) < 0.
* When X < E(X):
— ifZ < E(Z) (X and Z “agree”) then (X — E(X))(Z—-E(Z)) >0
— if Z> E(Z) (X and Z “disagree”) then (X — E(X))(Z — E(Z)) < 0.
* When X and Z have a high probability to “agree” (both are above or below
their expectation), then (X — IE(X))(Z — [E(Z)) has a high probability of
being positive, and then cov(X,Z) = IE[(X — IE(X))(Z — IE(Z))] > (.

* Onthe other hand, when X and Z have high probability to “disagree” (one
is above its expectation, the other one is below it), covariance negative.



The covariance between rain and sunshine

e Let X and Z denote the amount of rain and the
number of sunshine hours that we will have
tomorrow in Santa Barbara.

* Do you think that cov(X,Z) > 0, cov(X,Z) < 0, or
cov(X,Z) = 0? Discuss this during 1mn with your
neighbor.
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iClicker time

* Let X and Z denote the amount of rain and the
number of sunshine hours that we will have
tomorrow in Santa Barbara.

* Do you think that cov(X,Z) > 0, cov(X,Z) < 0, or
cov(X,Z) = 07 Discuss this during Imn with your
neighbor.

a) cov(X,Z) >0

b) cov(X,Z) <0

c) cov(X,Z) =0



Rain is negatively correlated with sunshine
hours!

e Days with more rain than the average amount of rain per
day also tend to have a lower number of sunshine hours
than the average.

« If X > E(X) (more rain than the average), then it is likely
that Z < E(Z) (less sunshine hours than the average).

* Conversely, if X < E(X) (less rain than the average),
then it is likely that Z > [E(Z) (more sunshine hours
than the average).

* Therefore, cov(X,Z) < 0.

* The covariance between two variables measures
whether they move in a similar or opposite direction.



A useful reminder: properties 1, 2, and 3 of
the covariance

. P1Cov: cov(X,Z) = E(XZ) — E(X)E(Z).

* P1Cov is very useful to compute the covariance between two
random variables. You just need to compute the expectation
of each variable, and the expectation of their product.

* P2Cov:if X and Z are independent, cov(X,Z) = 0.

 P2Cov is intuitive: if X and Z are independent, they do not
move in a similar or opposite direction, so cov(X,Z) = 0.

e P3Cov: —sd(X)sd(Z) < cov(X,Z) < sd(X)sd(Z)

L __ cov(X,Z)

et pxz = sd(X)sd(Z)

between X and Z.

* pyy must be included between two values. Which are those
two values? Discuss this with your neighbour for 1mn.

Pxz is called the correlation coefficient
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iClicker time

. __ cov(X,Z)
Let pxz = sd(X)sd(Z)

3)_1S,DXZS1
b)Oprzgl
C)ngngz

We have




_1S,DXZS1I

__ cov(X,Z)
Pxz = sd(X)sd(Z)
* P3Cov: —sd(X)sd(Z) < cov(X,Z) < sd(X)sd(Z)
* Therefore, —1 < py, < 1.

 cov(X,Z) > 0 means that X and Z positively related (sunshine hours and
temperature).

 cov(X,Z) < 0 means that X and Z positively related (sunshine hours and
rain).

* But how can we assess the strength of the positive or negative relation
between X and Z?

* By looking at py!
* pyz = 1: perfect positive correlation between X and Z: Z = aX + b with
a > 0.

* pyxz = —1: perfect negative correlation between X and Z: Z = aX + b with
a<0.

* pxz = 0.7:strong, but not perfect positive correlation between X and Z.




A useful reminder: property 2 of the
variance

e P2Var: If X and Z are two random variables, and if a
and b are two real numbers, then

V(aX + bZ) = a*V(X) + b*V(Z) + 2ab X cov(X,Z)

* Combining P2Var and P2Cov, we obtain that if X and

Z are two independent random variables, and if a
and b are two real numbers, then

V(aX + bZ) = a*V(X) + b?V(Z)



Which value of x minimizes
V(xY;+(1 —x)Y;)?

e After this little detour to learn about covariance and
correlation coefficient, back to polling.

 Assume we randomly choose with replacement 2
voters from the register, that we interview them, and
ask them if they want to vote for Clinton.

* Let Y; and Y, denote the answer of these two voters.
* So far we have learned that any weighted sum of Y;

and Y, is an unbiased estimator of p, and that we
should choose the one with the lowest variance.

* Canyou find the value of x such that V(xY;+(1 —
x)Y5) is minimized?



x = 0.5! Best estimator: average of Y; & Y5

* Goal: minimize V( xY;+(1 — x)Y,) wrt x.

¢ V( xY1+(1 — X)Yz)
= x2V(Yy) + (1 — x)?V(Y,) Why is this true?
=x’p(1-p) + (1 —x)*p(1 —p) | Whyis this true?
=p(1-p)(x*+ (1 —x)?)
=p(1—p)(2x? — 2x + 1).

* Differentiate wrt x:
0, V(xY1+(1 —x)Y,) = p(1 —p)(4x — 2).
V(xY;+(1 — x)Y;) minimized at x = 0.5!

* 0.5Y; + 0.5Y,, average of Y, and Y5, is best linear unbiased
(BLU) estimator of p.
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Do we gain a lot by interviewing 2 voters
instead of one?

* Assume we randomly choose with replacement 2
voters from the register, that we interview them,
and ask them if they want to vote for Clinton.

* Let Y; and Y, denote the answer of these two
voters.

* So far we have learned that 0.5Y; + 0.5Y; is the
estimator of p we should use if we interview two
voters.

* What is the variance of this estimator? How does
it compare to the variance of ¥, the estimator
we would use if we only interviewed one voter?
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Interviewing two voters instead of one
divides the variance of our estimator by 2!

e So far we have learned that 0.5Y; + 0.5Y; is the estimator of
p we should use if we interview two voters.

 What is the variance of this estimator? How does it compare
to the variance of Y;, the estimator we would use if we had
only interviewed one voter?

. V(0.5Y, + 0.5Y,)

= 0.5%V(Y;) + 0.52V(Y,) Why is this true?
= 0.5°V(Y1) + 0.52V(¥;) Why is this true?

* Interviewing 2 voters instead of 1 divides the variance of our
estimator by 2!
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Why does variance of estimator diminishes
when we go from 1 to 2 voters interviewed?

Assume that p = 0.5.
If we interview only one voter, our estimator is Y.

— With probability 0.5, Y; = 1 (voter we randomly select = Clinton voter)
=> we overestimate p by 0.5.

— With probability 0.5, Y; = 0 (voter we randomly select = Trump voter) =>
we underestimate p by 0.5.

If we interview two voters, our estimator is 0.5Y; + 0.5Y,.

— With probability 0.25, the 2 voters we randomly select = Clinton voters
=>(0.5Y; + 0.5Y, = 1 => we overestimate p by 0.5.

— With probability 0.25, the 2 voters we randomly select = Trump voters
=>(0.5Y; + 0.5Y, = 0 => we underestimate p by 0.5.

— With probability 0.5, we randomly select one Clinton voter and one
Trump voter => 0.5Y; + 0.5Y, = 0.5 => we do not over- or
underestimate p.

0.5Y; + 0.5Y; has a much lower probability of being far from p than Y.

That’s why its variance is much lower: variance = average mistake we make
when use estimator as a proxy for p.



What you need to remember

e |f we draw two voters from the register, and ask them if they want to vote
for Clinton:

We can build many unbiased estimators of p using their two answers
Y; and Y,: for any real number x, xY;+(1 — x)Y, is an unbiased
estimator of p.

We should choose the value of x which minimizes the variance of
xY;+(1 — x)Y,, our estimator of p.
This value is x = 0.5.

0.5Y; + 0.5Y; is the best linear unbiased estimator of p if we interview
two voters.

The variance of 0.5Y; + 0.5Y, is twice smaller than the variance of Y3,
the estimator we would have used if we had only interviewed one
voter.

e Along the way, we have defined the covariance between two random
variables, and the coefficient of correlation:

Covariance measures whether there is a positive or negative relation
between two variables

Coefficient of correlation: normalized version of covariance, must be
included between -1 and 1. 1: perfect positive correlation between the
variables. -1 perfect negative correlation.



Part 2.3: Can we further improve
things by interviewing many voters?
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Can we improve things by interviewing
many voters?

* |n this section, we are going to assume we
interview n voters, and ask them if they want
to vote for Clinton.

* By using the answers of these n people, can
we build a better estimator of the percentage
of the Pennsylvania electorate that wants to
vote for Clinton?



The voters are chosen with replacement

First, we randomly choose a number between 1 and 8,448,674. We
interview the voter with that number in our register and ask her if she
wants to vote for Clinton. Let Y; denote her answer.

Second, we randomly choose another number between 1 and
8,448,674. We interview the voter with that number in our register
and ask her if she wants to vote for Clinton. Let Y, denote her answer.

Third...

... Finally, we randomly choose another number between 1 and
8,448,674. We interview the voter with that number in our register
and ask her if she wants to vote for Clinton. Let Y,, denote her answer.

The voters are chosen with replacement: if the first number we
randomly chose was 12,235, we can still randomly choose 12,235 the
second time.



What is the probability distribution of the
random variables Y3, Y5,..., Y, ?

* Assume we randomly choose with replacement n
voters from the register, that we interview them,
and ask them if they want to vote for Clinton.

* Let Y3, Y,,..., Y;, denote the answers of these
voters.

* WhatvaluecanVty,Y,,..., Y, take?
* What is the expectation of these variables?
 What is their variance?
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Y, Y5,..., Y, follow the same distribution.

* For every number i included between 1 and n, Y;= 1 if the
ith voter we draw wants to vote Clinton, Y;= 0 otherwise.

* EF)=0xPY;=0)+1xP(Y;=1) =P(; =1) =p.
 The ith voter we choose can be any of the 8,448,674
voters in Pennsylvania. p% of voters are willing to vote

Clinton. Therefore, the probability that the ith voter we
choose wants to vote Clinton is p.

* One canshow that V(Y;) = pn(1- p).

* AlltheY; have the same expectation, the same variance,
and same probability distribution. We say they are
identically distributed.
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AreY;, Y5,..., Y, dependent or
independent?

* Assume we randomly choose with replacement
n voters from the register, that we interview
them, and ask them if they want to vote for
Clinton.

* Let Y;, Y>,..., Y, denote the answers of these
voters.

* So far we have learned that Y3, Y5,..., ¥;, are
identically distributed.

* AreY,, Ys,..., Y, dependent or independent?
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Y;,Y,..., Y, are independent

* AreY,, Ys,.., Y, dependent or independent?

e Vi, Y5,..., Y, areindependent. If the third voter we draw
wants to vote Clinton, we are not more or less likely to
draw a fourth voter that wants to vote Clinton.

Y1, Y5,.., Y, independent and identically distributed
(iid).

* Independence: the lottery that gives rise to Y;
(randomly choose one voter out of the 8,448,674 in
the register) is conducted independently from that
giving rise to Y,,, just as when you independently toss
two coins.
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Reminder: property 3 of expectation.

* P3Expectation: If X, X5,..., X;; are n random
variables, then E(X; + X, + -+ X)) = E(X,) +
E(X,) + - E(X},).

* Another way of writing exactly the same thing:
E(Z?=1 Xi) — Z?=1 E(Xi)



Properties 1, 2, and 3 of summation.

 P1Sum: For any real number x,
Z?:lx =X+X+ -+ X =nx.

 Summation of n times the same number is equal to n times
that number.

* P2Sum: For any sequence of real numbers (x{, X5,..., Xy,)
and for any real number g,
i=1 0% = qX1 + qxz + -+ qxn = g +xz + 0 +
Xn) = q Xi=1 X;-
* P3Sum: For any sequences of real numbers (x4, x5,..., X5,)

ar)ld (}’1, yZI"'I yn)r
=1 (i ty)=xt Yyt ty, ot an t Y =%+
X+t xp+ Yy F Yo+t y, = 2ica X+ Xisq Vi
« Summation of the sum of two numbers is the sum of the

summations of these numbers.



Property 1 of double summations.

 P2DoubleSum: For any sequences of real
numbers (x{, X5,..., X,) and (z¢, z,..., Z;),

121 1XiZj = (2i=1 l))((z =1 J)
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Can you find an unbiased estimator of p
involving Y; , ¥5,..., ¥, ?

 Assume we randomly choose with replacement n
voters from the register, that we interview them, and
ask them if they want to vote for Clinton.

 Let V3, Y,,..., Y,, denote the answers of these voters.

* So far we have learned that Yy, Y5,..., Y, are iid random
variables whose expectation is p.

* Canyou find an unbiased estimator of p involving
Y,,Y,,..., Y,? Reminder: when we observed only Y;

and Y, the best unbiased estimator was % (Y, +Y,).
Discuss this question with your neighbor during 2mns.
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iClicker time

* Which of the following estimators is an unbiased
estimator of p?

1

a) Ez?ﬂ i
2

b) ~Xi=1Y;
1

c) ;Z?ﬂ i



1 . . .
—.i=1 i is unbiased estimator of p

e Y,,Y,,..., Y, iid variables, expectation p. Unbiased estimator of p?

1 . : -
. ;Z?:l Y; is an unbiased estimator of p.

1
© E(GZaY)
n
(Z Yi> Why is this true?

E(Y;) | Whyis this true?

I
| =
T3

Why is this true?

<

DI

o~
Il
(=Y

<SS+ S| S|k= S

Why is this true?

>
=




What is =37, ¥;?

* Assume we randomly choose with
replacement n voters from the register, that
we interview them, and ask them if they want
to vote for Clinton.

* Let V3, Y5,..., Y}, denote the answers of these
voters.

1 .
* So far we have learned that =)./_; ¥; is an
n
unbiased estimator of p.

* What is %Z’{Ll Y; in plain English?
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1 .
~.i=1 Y is the % of voters who say they
want to vote for Clinton in our sample.

1

° - * Y. isan unbiased estimator of p.

* Whatis %Z’lf‘:l Y; in plain English?

1

* —li=1 Y; is just the % of voters that want to vote for Clinton,

among those we interview. )i’ Y; counts number of voters
who want to vote Clinton. Divided by n, this gives the %.

* Intuitive: to estimate p, the % of voters that want to vote
Clinton among all Pennsylvania voters, we use the % of voters
that want to vote for Clinton among the sample of
Pennsylvania voters we interview.

 Random sampling of our sample ensures it is representative
of the entire population of voters in Pennsylvania.
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A useful reminder: properties 3 and 4 of
the variance

* P3Var: If X4,..., X,, are n independent random
variables, then V(X' X;) = Xiv V(X;)

 P4Var: If X is a random variable and a and b
are real numbers, then V(aX + b) = a?V (X).



. . 1
What is the variance of ~>,;—, ¥; ?

 Assume we randomly choose with replacement n
voters from the register, that we interview them,
and ask them if they want to vote for Clinton.

* Let V3, Y,,..., Y, denote the answers of these
voters.

* So far we have learned that 12’{‘:1 Y;, the % of

voters that want to vote for Clinton in our
sample, is an unbiased estimator of p.

* What is the variance of12?=1 Y; ? Try to find the
n
answer with your neighbor, you have 2 mns.
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iClicker time

* What is the variance of%Z?zl Y; ?
1 1

a) V (g Yi=1 Yi) ==V(11)
1 1

b) V (g 2i=1 Yi) == V()

c) V (% Yi=1 Yi) =V(Y1)



V(%Z?:l i)=%V(Y1)
c V(L)

n

1
= —V(Z Yi> Why is this true?

1
= ﬁz V(Y Why is this true?

1 . .
= —Zz V(Y;) Why is this true?
n
1 =1
= —nV (%) Why is this true?
1
= gV(Yl).
* Many linear unbiased estimators of p. E.g.: n¥; — )L, Y;.

. 1
 However, none has a variance lower than gV(Yl).

1 : : : :
- Y.i~1Y; is the BLU estimator of p, when we interview n voters
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Can we estimate the variance of our estimator?

 Assume we randomly choose with replacement n
voters from the register, that we interview them, and
ask them if they want to vote for Clinton.

 Let V3, Y,,..., Y,, denote the answers of these voters.

1
* So far we have learned that 527@1 i, % of voters that
want to vote for Clinton in our sample, is an unbiased
: . .1
estimator of p. Its variance is ;V(Yl).

. . 1
* Can we estimate the variance Ong?ﬂ Y; ? Would be
useful to assess how precise our estimator is.
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Reminder: estimating the variance of the
average of random variables.

Let X4, X5,..., X;, be niid random variables.
Let X = 12" X; denote their average.
One has V(X) = nl)

. 1 -
To estimate V (X;), we use — X (X; — X)*.
Intuition:

To estimate V(X), need to estimate V(X;).

— To estimate [E(X;), we use — Z 1 X; 1 we replace the expectation by
the sample average of X;.

- V(Xp) = ((X1 — ]E(Xl))z), so to estimate it we use the sample
average of (X; — X)?2.

| R e ok , _
Accordingly, we use V(X) = - to estimate V(X).

Definition: Let X{, X>,..., X;, be n iid random variables. —Z" (X —
X)? is the sample variance of those random variables.



We can use

Y(1-Y)
n

to estimate V(Y)

Y, Ys,..., Y, iid with expectation p. Y = %Z?zl Y:: unbiased
estimator of p, whose variance is %V(Yl).

How can we estimate V(Y)?

1 —
— Xt (Yi=1)?

n

Following reminder, we use V (¥) =

Asthe Y], Y,,..., Y, are binary, one can show V(Y) =

n

Convenient: knowing Y and n is sufficient to compute V (Y).

Y(1-Y)
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What happens to the variance of our estimator
when the number of voters we interview grows?

 Assume we randomly choose with replacement n
voters from the register, that we interview them, and
ask them if they want to vote for Clinton.

 Let V3, Y,,..., Y,, denote the answers of these voters.

1
 So far we have learned that 527@1 Y;, the % of voters
that want to vote for Clinton in our sample, is an
. : : .1
unbiased estimator of p, whose variance is ;V(Yl).

. 1
 What happens to variance of ﬁz?ﬂ Y; when n grows?
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It goes to 0! With an infinite sample, our
estimator becomes equal to p.

1 , . . .1
. ;Z?=1 Y;: unbiased estimator of p, whose variance is ;V(Yﬂ

. 1
 What happens to the variance of;Z?zl Y; when n grows?
b
n+1
of estimator decreases.

V(Y;) < %V(Yl). Each time we add one voter to sample, variance

. llrp ;V(Yl) = 0. If we interview infinity of voters, variance of our
Nn—>+00

estimator goes to 0.
* Variance of our estimator is the mistake it makes when estimating p.

e =>with an infinite sample, our estimator no longer makes any
mistake in estimating p, it becomes equal to p:

1
Iim =YY" Y. =».
n_)+oonzl—1 i =D

* Law of large numbers.
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Why does lim 12?=1Yi =p?

n—-+oon

* Assume that p = 0.5. 50% of Clinton voters and 50% of Trump voters in the
population.

* |f we interview two voters:

—  With probability 0.25, the 2 voters we randomly select = Clinton voters =>
our sample is very different from population.

—  With probability 0.25, the 2 voters we randomly select = Trump voters =>
sample again very different from population.

— Overall, 0.5 probability of getting sample where percentage of Clinton
voters is very different from that in population.

* |f we interview 1000 voters:
— probability of interviewing only Clinton voters = 0.51990~0,
— probability of interviewing only Trump voters = 0.51900~(.

* With a sample of 1000 voters, much less likely to draw sample where
percentage of Clinton voters is very different from that in population.

When the sample size goes to infinity, O probability to draw sample where
percentage of Clinton voters is different from that in population.



What you need to remember

 Assume we draw n voters from the register, and ask them if they
want to vote for Clinton. Let Y3, Y5,..., ¥,, denote their answers.

* The average of their answers, Y, is an unbiased estimator of p, the
% of Pennsylvania voters that want to vote for Clinton.

 Randomly drawing the sample of voters we interview ensures it is
representative of the Pennsylvania electorate.

« V(Y) = %V(Yl). You need to remember how to prove that.

e V(Y) goes to 0 when n grows.

* If we were to interview an infinity of voters, Y would become equal
to p: law of large numbers.

=Y (v4-7)? _
e We canuse V(¥) = == to estimate the variance of Y. As
Y(1-Y)

the Yy, Y,..., Y,, are binary, one can show V(Y) = —.




We could learn p by interviewing an infinite random
sample of voters. Do we want to do that?

* Assume we randomly choose with replacement n
voters from the register, that we interview them,
and ask them if they want to vote for Clinton.

* Let Y3, Y5,..., Y., denote the answers of these
voters.
1
* So far we have learned that =), Y;, the % of

voters that want to vote for Clinton in our
sample, is an unbiased estimator of p, and will

become equal to p if we interview infinity of
voters.

e Do we want to do that?
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No!

1 : : :
« =) .Y becomes exactly equal to p if we interview an

Pnfinity of voters.
* Do we want to do that?
* Nope, we are lazy and we have a life, unlike this guy!

* Your smart friend’s response relies on an even smarter tool
than the law of large numbers: the central limit theorem.
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Reminder: The central limit theorem.

* Let X4, X5,..., X;; be niid random variables.
* Let m denote their expectation.

> 1
* Let X = =);. X; denote their average.
n

1 —

e Let 17()?) =

e CLT:if nislarger than 100, then

follows a normal distribution with expectation 0 and
variance 1.
X-m

n denote the estimator of V(X).

AN =

approximately

. difference between average of the variables and

7(X)
their expectation, divided by estimator of standard
deviation of X.



Reminder: the N(0,1) distribution.

e Arandom variable X follows a normal distribution

with expectation O and variance 1 (N(0,1)) if for any
real number x,

x2

PX<x)=[" \/:e_7dx

2
: .1 X
e |ts density functionis—e 2.

V2m



A graph of the density of a N(0,1) variable

Marmal FDF

a4
aa

gz

Probab ility Dens ity

a1

* Area below curve and between blue lines: probability that X included
between -1 and 1: quite large.

* Area below curve and to the right of the red line: probability that X
greater than 2. Very small.

* A N(0,1) random variable is more likely to be close to than far from 0.
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3 facts to remember about N(0,1) variables

 F1-N(0,1): AN(O,1) variable has a 90% probability of being
included between -1.64 and 1.64.

e If youdraw a N(0,1), it is possible but unlikely (10% chance)
that you get a result below -1.64 or above 1.64.

 F2-N(0,1): AN(0O,1) variable has a 95% probability of being
included between -1.96 and 1.96.

e If youdraw a N(0,1), it is possible but very unlikely (5%
chance) that you get a result below -1.96 or above 1.96.

 F3-N(0,1): AN(O,1) variable has a 99% probability of being
included between -2.57 and 2.57.

* Ifyoudraw a N(0,1), it is possible but very very unlikely (1%
chance) that you get a result below -2.57 or above 2.57.



. . Yy—
What is the distribution of — p_ ?
Y(1-Y)
n

* Assume we randomly choose with replacement n voters from
the register, that we interview them, and ask them if they
want to vote for Clinton.

* Let V3, Y,,..., Y, denote the answers of these voters.

— 1 .
e letY = ;Z?ﬂ Y; denote average of their answers.

e LetV(Y) = YAY) pe the estimator of the variance of Y.
 |fn =100, what is the distribution of ;(_p?)? Discuss this
1_

n

guestion with your neighbor during 2mns.
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iClicker time

 Ifn =100, what is the (approximate) distribution of ;(_p?)?
1_

Y- : _ : :
a) = p? approximately follows a normal distribution with
1_

—/

expgctation 0 and variance 2

y— . T ]
b) P approximately follows a normal distribution with

Y(1-Y

—/

n
expectation 0 and variance 1
Y—p
Y(1-Y)

c)

approximately follows a binomial distribution with

n
parameters n and p.



Y-p

/17(1 Y)
n

e What is the distribution of

If n = 100,

follows the N(0,1) distribution

Y-p 5
Y(1-Y)
n
e Y., Y., Y, areiid, and their expectation is equal to p.

* Therefore, if n = 100 we can apply the CLT:— follows N(0O,1
pply m (0,1)

distribution.

. B(ecau)se the random variables Y3, Y, ..., ¥,, are binary, V(¥) =
v(1-Y

n

Y-p
Y(1-Y)
n

* Therefore, follows the N(0,1) distribution.
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If we interview 2000 voters and find that Y = 0.53,
is it plausible that p = 0.507?

 Assume we randomly choose with replacement n voters from the register,
that we interview them, and ask them if they want to vote for Clinton.

e lLet V3, Y,,..., Y, denote the answers of these voters.

Y-p

* So far we have learned that follows N(0,1) distribution.

Y(1-Y)
n

* If we randomly choose 2000 voters and find that 1060 want to vote for
Clinton, thus implying that Y = 0.53, is it plausible that p, the percentage
of the Pennsylvania electorate that wants to vote for Clinton, is equal to
0.507? Discuss this question with your neighbor during 2mns. Hint: plug the

- . Y- . .

values of Y, nn, and p into = p?)’ and use the fact this quantity follows a
1_
n

N(0O,1) distribution.
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iClicker time

* If we randomly choose 2000 voters and find that
1060 want to vote for Clinton, thus implying that Y =
0.53, is it plausible that p, the percentage of the
Pennsylvania electorate that wants to vote for
Clinton, is equal to 0.507?

a) Yes, this is plausible.
b) No, this is not plausible.



p = 0.50 incompatible with Y = 0.53 if we interview
2000 voters.

If we interview 2000 voters and find Y = 0.53, plausible that p =
0.50°7

n = 2000 and Y = 0.53. CLT says 02372 follows N(0,1).
\/0.53(1—0.53)

2000

Plugging » = 0.50 into this expression yields 2.688125.
A N(0,1) random variable has very low probability of being that large.
=> implausible that p = 0.50, incompatible with the data we observe.

We might be wrong: maybe share of Pennsylvania voters that want to
vote for Clinton is equal to 0.50, but out of bad luck 1060 voters out

of the 2000 we drew want to vote for Clinton. That’s possible, exactly
as it’s possible to get 1060 heads when you flip a fair coin 2000 times.

However, the CLT theorem tells us that such an unlucky draw, where
the sample differs so much from the Pennsylvania electorate, is as
likely to happen as drawing a N(0,1) random variable equal to
2.688125: very unlikely.
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If we interview 200 voters and find that Y = 0.53, is
it plausible that p = 0.507?

Assume we randomly choose with replacement n voters from the register,
that we interview them, and ask them if they want to vote for Clinton.

Let Y, Y5,..., Y, denote the answers of these voters.

Y-p

So far we have learned that follows N(0,1) distribution.

Y(1-Y)
n

If we randomly choose 200 voters and find that 106 want to vote for
Clinton, thus implying that Y = 0.53, is it plausible that p, the percentage
of the Pennsylvania electorate that wants to vote for Clinton, is equal to
0.507? Discuss this question with your neighbor during 2mns. Hint: plug the

values of ¥, n, and p into ——,
-7
n

follow a N(0,1) distribution.

and use the fact this quantity should
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iClicker time

* If we randomly choose 200 voters and find that 106
want to vote for Clinton, thus implying that Y =
0.53, is it plausible that p, the percentage of the
Pennsylvania electorate that wants to vote for
Clinton, is equal to 0.507?

a) Yes, this is plausible.
b) No, this is not plausible.



p = 0.50 compatible with Y = 0.53 if we interview 200
voters.

If we interview 200 voters and find Y = 0.53, plausible that p =
0.50°?

n =200 and Y = 0.53. CLT says 02372 follows N(0,1).
\/0.53(1—0.53)

200

Plugging p = 0.50 into this expression yields 0.85006.

A N(0,1) random variable might very well be equal to 0.85006, not
rare value.

Therefore, not implausible that p is equal to 0.50. Compatible with
the data we observe.

Intuition: if you draw 2000 times a coin and get 1060 heads, you can
be pretty sure the coin is not fair, biased towards heads. If you draw it
200 times and get 106 heads, the coin might be fair. Same here,
except that you draw voters instead of tossing a coin, and
heads=voting Clinton.

So far: intuitive introduction to the theory of statistical tests. Now we
formally review this theory. Then we will come back to our example.
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Reminder: the t-test with 5% level

Let X4, X5,..., X;, be niid random variables with expectation m.
1

Let X = %Z’{‘lei ,andletV(X) =2 1n
CLT: if n = 100, X:n} approximately follows a normal distribution
VV(X)

with expectation 0 and variance 1.

For any real number x, we can use this to test the null
hypothesis m = x, while controlling the probability of type 1 error:
rejecting the null hypothesis while it is true.

If we want to have 5% chances of wrongly rejecting m = x, test is:

X—Xx X—X
Rejectm=xif—> 1.96 or —— < —1.96.
) NZes NZes

Otherwise, do not reject m = x.

X—x

N0
with 5% level (probability of type 1 error)

is called the t-statistic, and the test above is called a t-test



If we use a 5%-level t-test, what are the chances
we make a type 1 error?

 OQurtestisthe followmg

> 196or —
\/V(X) \/V( X)

Otherwise, do not reject m = x.

* |If we use this test, what are the chances we reject m = x while
actually it is true that m = x?

X—x X-m
e Ifm=x,then —== —. Then, we will wrongl

V(X) JV(X) &y
> 1.96 or |f —
,/V(X) VV(X)
* We know from the CLT that XA — follows a normal distribution

VYV (X)

with expectation 0 and variance 1.

— >196or —
m m

< —1.96.

Rejectm = x if =

rejectm = x |f — < —1.96.

 What is probability that — < —1.967



5%!

X-m
. — follows a N(0O,1) distribution.
— (0,1) s _
X—m X—m
e What is probability that —— > 1.96 or — < —1.967?
P YO T ® NZ3

 F2-N(0,1): a N(0,1) random variable has a 95% probability
of being included between -1.96 and 1.96.

* Therefore, the probability that a N(0,1) is either greater
than 1.96 or lower than -1.96 is 5%!

* Now, we have a 5% level test of m = x. With your neighbor,
try to find a 10% level test of m = x. Hint: take a look at F1-
N(O,1).

122



iClicker time

* Which of the following is a 10% level test of m = x?
X—x X—x

a)Rejectm=xif —=> 164 or—< —1.64
) J VvV (X) VV(X)
Otherwise, do not reject m = x.
X—x X—x
b) Rejectm = x if —=> 2.57 or —= < —2.57
) J VV(X) VV(X)

Otherwise, do not reject m = x.



T-tests with 10% and 1% level

* |f we want to have 10% chances of wrongly rejecting m =
X, our test is:

. e X—x . X—X .
Reject m = x |fm > 1.64 or |fm < —1.64.

Otherwise, do not reject m = x.

* |f we want to have 1% chances of wrongly rejecting m = x,
our test is:

X—x . X—x
79 > 2.57 orif 63

Otherwise, do not reject m = x.

Reject m = x if < —=2.57.




Reminder: a 95% confidence interval for m

* Let X4, X5,..., X;; be niid random variables with expectation
m.

A 95% confidence interval (Cl) is an interval such that m has
95% chances of belonging to this interval.

* Simple formula: [)_( —1.96 /17()_(), X +1.96 /17()_()]

* Confidence interval: X, our estimator of m, +/- a statistical
margin of error: 1.96/V(X).

L iym o (x,-X)*
- V(X)==2 “151 ) goes to 0 when n grows => margin of

error vanishes when sample gets large.

* Now, we have 95% Cl for m. With your neighbor, try to find
90% CI for m.
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iClicker time

* Which of the following is a 90% confidence interval
form?

a) :)? — 257V (X), X + 2.57\/17()?):

b) |X - 164/V(X), X +1.64 V(}?):




90 and 99% Cls for m

. 90% Cl: 5?—164 D(X), X+ 1.64 17()?)'.

. 99% CI: | X — 2.57/7 (%), X + 257V (X)|.

¢ We now have 95%, 90% and 99% Cls for m.
Which is the widest? Which is the tightest?
Intuition?




The more certain we want to be, the more
margin of error we need to allow.

e The widest is the 99% Cl: width =
X+ 2570 (%) - ()? —2.57 17()?)) =2 x 2.57./7(X).

 The tightest is the 90% one: width = 2 X 1.64/V (X).

* |ntuition: if we want to be sure with 99% certainty that m
belongs to some interval around X, we need to allow for a

larger margin of error around X than if we only want 90%
certainty.



A 5% level t-test that 50% of voters want to vote
Clinton

 Assume we randomly choose with replacement n voters from
the register, that we interview them, and ask them if they
want to vote for Clinton.

* Let V3, Y,,..., Y, denote the answers of these voters.

* Sofar: Yy, Y5,..., Y, areiid, and that their expectation is p.
Because Y, Y,,.., Y, are binary, V(Y) = Y(ln_y)

* From our review of theory of statistical tests, it follows that

the following is a 5%-level test of p = x:

Reject p = x if —— > 1.96 or —— < —1.96.

Y(1-Y) Y(1-Y)

n n

Otherwise, do not reject p = x.

e Ifn =2000,Y = 0.53, do you reject p = 0.50 at 5% level?
Try to find the answer with your neighbor during 1 minute.
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iClicker time

* Ifn=2000,Y = 0.53, do you reject p = 0.50
at the 5% level?

a) Yes
b) No



Yes!

* From our review of theory of statistical tests, it follows that
the following is a 5%-level test of p = x:

X 5196 0r—X_ < —1.96.

Y(1-Y) Y(1-Y)
n n

Otherwise, do not reject p = x.

Rejectp = x if

e Ifn =2000andY = 0.53, can you reject p = 0.50 at the
5% level?

e Yes!Letn = 2000,Y = 0.53, and x = 0.50. Then,
“* _ — 2.688125. This number is larger than 1.96.

Y(1-Y)

e Ifn =2000,Y = 0.53, do you reject p = 0.50 at 1% level?
Try to find the answer with your neighbor during 1 minute.
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iClicker time

* Ifn=2000,Y = 0.53, do you reject p = 0.50
at 1% level?

a) Yes
b) No



Yes!

* From our review of theory of statistical tests, it follows that
the following is a 1%-level test of p = x:

X S 2570or—X_ < —257.

Y(1-Y) Y(1-Y)
n n

Otherwise, do not reject p = x.

Rejectp = x if

e Ifn =2000andY = 0.53, can you reject p = 0.50 at the
1% level?

e Yes!Letn = 2000,Y = 0.53, and x = 0.50. Then,
—~_ = 2.688125. This number is larger than 2.57.

~l

~l

(1-Y)

* Find the 95% confidence interval of p. Try to find the
answer with your neighbor during 1 minute.
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iClicker time

e Ifn =2000,Y = 0.53, the 95%
confidence interval for p is equal to:

a) [0.508,0.552
b) [0.372,0.971]




The confidence interval of p is [0.508,0.552].

* From our review of theory of confidence intervals, general
formula for 95% confidence interval of p is

[7 —1.96 mn‘?),Y +1.96 \/7(1—?)‘

n

* Here,n = 2000, Y = 0.53, so this interval is [0.508,0.552].

* Given that 53% of our sample of 2000 randomly chosen
Pennsylvania voters wants to vote for Clinton, we can be
95% confident that the share of Pennsylvania voters that
want to vote for Clinton is included by 50.8% and 55.2%.

* Your smart friends were right!
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Interpreting what a confidence interval means in
the polling example.

*  When we randomly draw 2000 voters with replacement from the
Pennsylvania electorate, there are 8,448,674°°%Y possible outcomes of
this random draw.

*  When we say that we are 95% confident that p belongs to

LY —1.96 /7(111_7) Y +1.96 17(1n—17) , that means that for 95% of these

,448,674%9%9 samples we can draw, p belongs to that interval.

e 1.96 Y275 our statistical margin of error.
« Maybe Y is not exactly equal to p, but for 95% of all the random samples
of 2000 voters we can draw, Y will not be more than 1.96 y{1-r) away

from p.

* If you conduct 1000 polls (in each of the 50 states and at 20 different
points in time) and that after each poll you say that proportion of voters
that want to vote for Clinton in that state and at that point in time is
included in the confidence interval of the poll, that statement will be right
for 950 of those polls, but it will be wrong for 50 polls.



What you need to remember (1/2)

 Assume we draw n voters from the register, and ask
them if they want to vote for Clinton. Let Y3, Y5,..., ¥},
denote their answers.

* To estimate p, weuse Y. V(Y) = %V(Yl). We use
V() = Y(ln_y) to estimate V (V).
* The following is a 5%-level test of p = x:

X > 1960r—X_ < —1.96.

Y(1-Y) Y(1-Y)
n n

Otherwise, do not reject p = x.
* We can 95% confident that p lies in the following

interval:[)_’ —1.967 (), ¥ + 1.96\/17()7)].

Rejectp = x if



Ryan Longmuir 



What you need to remember (2/2)

e All results we saw hold whenever we observe sample of iid variables. Poll = a
special case where we observe iid sample.

* Assume we observe X11’ X5,..., Xy, niid random variables. Let m denote their
expectation. Let X = ;Z?lei denote their average.

e X :unbiased estimator of m. Linear unbiased estimator of m with lowest variance.
e V) =YY% im vk =o.

n-4+oon
L e = .1
*  With infinite sample, X becomes equal to m: lim =", X; = m.

n—+oon
1

e letV(X) == be estimator of V (X).
X-m
e CLT:ifnislarger than 100, —— approximately follows N(0,1) distribution.
g Jrer, 2PP y (0,1)

e A5%-level test of m = x is:

X—x X—x
Reject if ——= > 1.96 or —— < —1.96.
T T ® NZes

Otherwise, do not reject.

« A 95% confidence interval for m is [)? —1.96 /V()?), X+ 1.96 /V()?)]


Ryan Longmuir 



Some practical details

In practice, polling firms choose voters without replacement:

— randomly choose a number between 1 and 8,448,674. Interview voter
with that number and ask if she wants to vote for Clinton.

— then, randomly choose another number between 1 and 8,448,674,
excluding the first number they drew. Interview the voter with that
number and ask if she wants to vote for Clinton.

— Etc.
If we do this, all the results we saw remain true, but harder to derive.

_ —. . Y(1-Y) _ n . Y(1-Y)
Only 1 change: now V(Y) is ~ (1 —8,448’674), instead of —.
n

1-— Sa46072 < 1: drawing voters without replacement reduces variance

of our estimator (that’s why pollsters draw voters without replacement)

When we draw small sample from very large population, makes almost no

difference: e.g. 1 — ——2 = 0.999845,
8,448,674

In practice how do you draw a random sample without replacement from
a large population? You assign to each unit a random number, and you
select, say, the 2000 units with the lowest value of that random number.




Roadmap

1. Lay-out 4 assumptions.

2. Show that if those 4 assumptions are satisfied, then what
your friend is saying is indeed correct. Along the way,
learn more general lessons about expectation estimation,
hypothesis testing, and confidence intervals.

3. Critically assess those 4 assumptions. Relatedly, discuss
potential explanations for why polls failed to predict the
outcome of the last US presidential election. Present
briefly job opportunities for econ majors in polling firms.
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Part 3: Where we critically assess the 4
magical assumptions, and try to explain
why polls failed to predict outcome of
last US presidential election
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Pennsylvania polls were very favorable
to Clinton, but she lost the state.

Average of all polls in Pennsylvania. Clinton in Blue.
Average of polls in week before election: 46.8% Clinton, 44.7% Trump.
Real result: 47.5% Clinton, 48.2% Trump.

48.2% outside of 95% confidence interval for % of voters voting Trump one
could compute using surveys before the election.

49
48
& L
A6

a5

44

43

4z

41

40

39

1

B s Tho 00 O

memnas. A

Sep 04 Sep il Seplg Sep 25 Oct 02 Oct 09 Oct 16 B3 142



Polls even more favorable in Wisconsin &
Michigan, but Clinton also lost those states.

* Wisconsin:
— Average of polls in week before election: 46.8% Clinton, 40.3%
Trump.
— Real result: 46.5% Clinton, 47.2% Trump.

— 47.2% outside of 95% confidence interval for the % of voters
voting Trump one could compute using surveys before the
election.

* Michigan:
— Average of polls in week before election: 47.0% Clinton, 43.4%
Trump.
— Real result: 47.0% Clinton, 47.3% Trump.

— 47.3% outside of 95% confidence interval for the % of voters
voting Trump one could compute using surveys before the
election.



Based on these polls, high degree of
confidence Clinton would win.

 NY Times forecast, couple of days before the election: Clinton
has 90% chance of winning.

CHANCE OF WINNING

00% S

Hillary Clinton Donald J. Trump

| o .' 'ﬂ"

* Those forecasts might have discouraged democrat voters from
voting: useless, Clinton is going to win anyway.
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One of our 4 magical assumptions
must have failed. Which one?

* % of electorate that voted for Trump in Pennsylvania, Wisconsin, and
Michigan was not in the 95% confidence interval of Trump vote share
based on surveys in these 3 states.

 =>polls were wrong, much beyond their statistical margin of error.
* =>o0ne of our 4 magical assumptions must have failed.
*  Which one?

* Now we review the 4 magical assumptions, we discuss if they are plausible
in general and in the specific context of the 2016 US presidential election.



Assumption 1: your friend has access
to some register including the contact
details of all voters in Pennsylvania

* This assumption is never true. Instead polling
firms typically use the phone book, call people
and ask them if they are going to vote in the next
election. If not, interview ends there. If yes, then
they ask who they want to vote for.

* =>their sample is representative of voters in the
phone book, not of all voters.

* |sthis an issue?



Polls sample is representative of voters in
phonebook, not of all voters.

e 30 vyears ago: no big deal. Almost everybody was in the phone book.
Nowadays: much less true. For instance, many people no longer have a
landline.

* People in the phonebook might be different from people who are not, and
might vote differently. One might for instance suspect that people who are
not in the phonebook are younger, and therefore more liberal.

e |f that’s the case polls that use the phonebook are only representative of
voters in the phonebook, not of the entire electorate.

* Therefore, polling firms now use emails data bases to draw their samples.
Not clear that these data bases representative of electorate.

e |sthe failure of Assumption 1 likely to explain why polls failed to see
Trump would win?



But this is unlikely to explain why polls
failed to see Trump would win.

* |s the failure of Assumption 1 likely to explain
why polls failed to see Trump would win?

 Maybe, but not super plausible: the share of
people not in the phonebook was already
quite high in the 2012 presidential election,
and yet polls had done a good job forecasting
Obama would win.




Assumption 2: your friend drew randomly
the sample of 2000 voters he/she is going
to interview out of this register.

* Most polling companies randomly draw their sample
from, the phonebook, or large data base of emails.

* When you read a poll, very important to see whether
this methodology was used. If not, the results of the
poll should be interpreted with a lot of caution: sample
is not representative of any larger population.

* Even serious polls using random sampling failed to see
Trump would win => problem does not come from
failure of Assumption 2.



Assumption 3: when he contacts them, the
2000 voters all answer to your friend.

* Assumption 3 not plausible: many people do not
answer to polls.

* In your analysis, you can only use data from
people who have responded. => your sample is
representative of voters who respond to polls.

* Thisis anissue if people who do not respond to
polls vote differently from people who respond to
polls.



Respondents might vote differently from non
respondents, but hard to say in which direction.

* People who do not respond to polls are less likely, equally likely, or
more likely to be liberals than people who respond to polls?

* We know that people who do not respond to polls are richer, and
younger than people who respond.

* Hard to say whether more or less likely to be liberals than
respondents: the fact they are younger makes them more likely to
be liberals. The fact they are richer makes them more likely to be
conservatives.

* Inany case, respondents and non respondents are unlikely to be
representative of each other. Big issue for polls.

* Unfortunately, even serious pollsters do not report their non-
response rates: http://apps.washingtonpost.com/g/page/politics/post-abc-tracking-poll-oct-27-30-2016/2118/

 Any idea to increase response rates to polls?



One could pay people to participate in polls.

 Any idea to increase the response rates to polls?
 Economist’s answer: you should pay respondents.
e |ssue: might have differential effects according to people’s income.

e Larger effect among poorer people: many accept to respond.
Smaller effect among richer people: few accept to respond.

 Might then lead to more biased sample of respondents: poorer
people more over-represented among respondents than if we had
not given incentive.

* Issue less likely to be present if financial incentive large. Would
mean that polls more costly, but maybe that’s the price to pay to
get representative polls.

e |s the failure of Assumption 3 likely to explain why polls failed to see
Trump would win?



Failure of Assumption 3 unlikely to explain why
polls failed to see Trump would win.

* |s the failure of Assumption 3 likely to explain
why polls failed to see Trump would win?

 Maybe, but not super plausible: the share of
people not responding to polls was already
very high in the 2012 presidential election,
and yet polls had done a pretty good job at
forecasting Obama would win.



Assumption 4: when they respond to your
friend’s question: “Are you willing to vote for
Hillary Clinton?”, voters respond truthfully.

* Plausible in general? Yes, no reason why you
would lie to pollster.

* However, is Assumption 4 still plausible in the
context of the 2016 US presidential election?
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Social stigma attached to voting for Trump =>
voters might have responded less truthfully

e Stigma associated with voting for Trump => maybe
people who wanted to vote for Trump did not dare to
say it to pollsters.

 What'’s striking in Pennsylvania, Wisconsin, and
Michigan is that polls were spot on at predicting
Clinton’s vote share, but underestimated Trump’s.

 Some people who were planning to vote for Trump did
not dare to tell pollsters, and said instead they were
undecided, or planning on voting for Gary Johnson.

e Can you think of a way to account for this?



Use discrepancy between results and polls
in the last election to adjust current polls.

e Can you think of a way to account for this?

 The last-election correction method:

— Compute the following adjustment factor: share of people
who voted for the “frowned upon” candidate in last
election / share of survey respondents who said they
would vote for that candidate before last election.

— multiply the share of respondents who say they want to
vote for “frowned upon” candidate in the current election
by that factor.

— If polls underestimate the “frowned upon” candidate
equally in the current and in the last election, this method
will work.



Polling is an interesting and important industry,
and some polling firms hire Econ majors

* Polling is a difficult, and therefore interesting job.
e Polls matter: last US election.

* |f you want to learn more about polling, check Nate Silver’s blog. You can
start with this article: https://fivethirtyeight.com/features/the-state-of-
the-polls-2016/ , where he explains how he rates polls.

* Some polling firms hire econ majors. E.g., the Public Policy Institute of
California recently had an opening for a research associate position, and
the required qualifications were: “Bachelors or Master’s degree in
economics, health, political science, public policy, sociology or a related
field, or equivalent experience.”

e Lists of main polling firms in the US available here:
https://projects.fivethirtyeight.com/pollster-ratings/ or here:
https://en.wikipedia.org/wiki/List of polling organizations#United State
S




What you need to remember

Polls largely underestimated Trump’s vote share in
Pennsylvania, Michigan, and Wisconsin in the 2016 US
presidential election.

=> violation of one of the 4 magical assumptions must explain
that.

Pollsters cannot draw their sample from a register with all
voters. Instead, use the phonebook. Unlikely to explain why
polls failed in 2016: was already the case in 2012.

Most pollsters randomly draw their sample => assumption 2
satisfied.

Not all sampled voters answer to polls. Unlikely to explain why
polls failed in 2016: was already the case in 2012.

Normally, one would expect that voters answer truthfully to
polls. However, Trump was a “frowned upon” candidate:
social stigma attached to saying you vote for him => maybe
sampled voters did not dare to say they would vote for him.



